I'd suggest re-wording your question:
"How do I find the ordered pair (x,y) that solves this system of linear equations?"
One way of doing that would be to substitute y=5x+7 into the other equation:
-3x - 2(5x+7) = -12. Solve this for x. Once you have a value for x, subst. that value into y=5x+7 to find the corresponding y value.
Then write the ordered pair (x,y). That's it.
The answer is 9
9 times 2 = 18
9 times 5 = 45
See the attached picture for the solution:


- <u>We </u><u>have </u><u>given </u><u>that </u><u>the </u><u>coordinates </u><u>of </u><u>the </u><u>end </u><u>point </u><u>G </u><u>and </u><u>H </u><u>are </u><u>(</u><u> </u><u>-</u><u>6</u><u>,</u><u>5</u><u>)</u><u> </u><u>and </u><u>(</u><u> </u><u>2</u><u>,</u><u> </u><u>-</u><u>7</u><u> </u><u>)</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>length </u><u>of </u><u>GH </u>

The coordinates of G = ( -6 , 5 )
The coordinates of H = ( 2 , - 7 )
<u>According </u><u>to </u><u>the </u><u>distance </u><u>formula</u><u>, </u><u> </u><u>we </u><u>get </u><u>:</u><u>-</u><u> </u>

- <u>Here</u><u>, </u><u> </u><u>x1</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>,</u><u> </u><u>x2</u><u> </u><u>=</u><u> </u><u>2</u><u> </u><u>and </u><u>y1</u><u> </u><u>=</u><u> </u><u>5</u><u> </u><u>,</u><u> </u><u>y2</u><u> </u><u>=</u><u> </u><u>-</u><u>7</u>
<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u>







