Question 1:
F(x) and g(x) are like variables, just plug into the equation.
f(x) + g(x) = (x + 6) + (12x - 7)
x+6+12x-7 = 13x-1
Question 2: f(3) + g(-1)
You plug in the x-values into the equation, and then take the answer and add them together.
f(3) = 3+4
g(-1) = 12(-1)-6
f(3) = 7
g(-1) = -18
7 + (-18) = -11
Question 3:
This is similar to question 1, plug in the variables and simplify.
9x - (7x+3)
Remember to distribute the "-"
9x - 7x - 3
2x - 3
For this question the answer would be x=-3 and x=-2
Answer:
<h2>y = 4</h2>
Step-by-step explanation:
Put x = 9 to the equation 3x + 4y = 43
(3)(9) + 4y = 43
27 + 4y = 43 <em>subtract 27 from both sides</em>
4y = 16 <em>divide both sides by 4</em>
y = 4
Answer:
d=2_f - 9h_f
Step-by-step explanation:
es la segunda opción
Answer:
The system of equation can be used for determine the number of small and the large dogs groomed are
x + y = 22
43x + 75y = 1234
Step-by-step explanation:
Let us assume that the number of small dogs groomed be x.
Let us assume that the number of lagre dogs groomed be y.
As given
Paws at play made a total of $1,234 grooming 22 dogs.
Than the equation becomes
x + y = 22
Paws at play charges $43 to groom each small dog and $75 for each large dog.
Than the equation becomes
43x + 75y = 1234
Therefore the system of equation can be used for determine the number of small and the large dogs groomed are
x + y = 22
43x + 75y = 1234