1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
d1i1m1o1n [39]
3 years ago
5

Akbar and Lucia apply opposing forces on a

Physics
1 answer:
iragen [17]3 years ago
3 0

Answer:

20 N

Explanation:

We can solve this problem by applying Newton's second law of motion, which states that the net force applied on an object is equal to the product between the mass of the object and its acceleration:

F=ma

where

F is the net force

m is the mass

a is the acceleration

In this problem, we have:

m = 10 kg is the mass of the cart

a=2 m/s^2 is the acceleration

So the net force on the car is

F=(10)(2)=20 N

Since Lucia and Akbar are pushing into opposite directions, this means that this net force is the resultant of the two forces: and since the cart is accelerating towards Akbar, this means that Lucia is applying a force 20 N stronger than Akbar.

You might be interested in
Assume we’re able to travel to your planet and decide to take some fireworks with us to celebrate our journey.
julia-pushkina [17]

Answer:

The horizontal distance covered by the firework will be \frac{1876.8}{g}

Explanation:

Let acceleration due to gravity on the planet be g, initial velocity of the firework be u and angle made with the horizontal be ∅.

writing equation of motion in vertical direction:

v_{y}=u_{y}+(-g) t

u_{y}= u\sin \phi

and v_{y}=0

therefore \frac{u\sin \phi }{g} =t

writing equation of motion in horizontal direction:

s_{x}=u_{x}t

u_{x} = u\cos \phi

therefore the equation becomes s_{x}=\frac{u^{2}   \sin \phi  \cos \phi}{g}

therefore horizontal distance traveled =\frac{u^{2}\sin 2\alpha \phi }{2g}=\frac{1876.8}{g}\frac{m}{s}

5 0
3 years ago
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
A kangaroo can jump over an object 2.46 m high. (a) Calculate its vertical speed (in m/s) when it leaves the ground.
Elenna [48]

Answer:

a) 6.95 m/s

b) 1.42 seconds

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 9.81 m/s²

v^2-u^2=2as\\\Rightarrow -u^2=2as-v^2\\\Rightarrow -u^2=2\times -9.81\times 2.46-0^2\\\Rightarrow u=\sqrt{2\times 9.81\times 2.46}\\\Rightarrow u=6.95\ m/s

a) The vertical speed when it leaves the ground. is 6.95 m/s

v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{0-6.95}{-9.81}\\\Rightarrow t=0.71\ s

Time taken to reach the maximum height is 0.71 seconds

s=ut+\frac{1}{2}at^2\\\Rightarrow 2.46=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{2.46\times 2}{9.81}}\\\Rightarrow t=0.71\ s

Time taken to reach the ground from the maximum height is 0.71 seconds

b) Time it stayed in the air is 0.71+0.71 = 1.42 seconds

3 0
3 years ago
Can someone help me please
enyata [817]

Answer:

I think its distance

Explanation:

when measuring how far a p.o art u can use mm

3 0
3 years ago
Read 2 more answers
The law of suggests that the orbit of planets is not circular but .
SVEN [57.7K]
One of Kepler's laws is that the orbits of planets are elliptical. It's not a suggestion. BTW, circles are ellipses too, but so special that their likelihood is close to zero.
3 0
3 years ago
Read 2 more answers
Other questions:
  • Assume that the surface temperature of the lightbulb filament when it is plugged into an outlet of 120 V is about 3000 K and the
    14·2 answers
  • What is an effector strain of bacteria
    13·1 answer
  • If the new moon happens on January 15th, what shape will it be on February 6th?
    8·1 answer
  • Find change of velocity for:<br> 0-1.7 s<br> 1.7-6s
    8·1 answer
  • Question 9(Multiple Choice Worth 2 points)
    5·1 answer
  • Select all the correct answers.
    10·2 answers
  • A balloon is filled with 80 liters of gas on a day where the temperature was 34 degrees at sea level which is 101.3 kPa and rele
    15·1 answer
  • Task: At the end of the lesson you will be asked to develop a final writing assignment on the environmental problerns
    12·1 answer
  • Check the boxes of all the TRUE statements about weight and the acceleration due to gravity.
    12·1 answer
  • A 50,0 g silver spoon at 20.0°C is placed in a cup of coffee at
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!