<h2>
NH3 is a weak alkali that does not dissociate fully into its solution. Which of the following is true about NH3?
</h2><h2>
</h2><h2>
A. It has a very low pH.
</h2><h2>
B. It's dissociation is a reversible reaction.
</h2><h2>
C. It has a high H+ concentration.
</h2><h2>
D. It will release all of its OH- ions.</h2>
Explanation:
<h3>
NH3 is a weak alkali that does not dissociate fully into its solution: It's dissociation is a reversible reaction.
</h3><h3>
</h3>
Reactions are also :
Reversible reaction
A reaction in which products can combine back to give reactants under same given condition .
Example : N₂+H₂-------NH₃
Irreversible reaction
A reaction in which the products cant combine back to give reactants under same set of conditions .
Example : Burning of paper
Answer:
The answer to your question is: % error = 0.4
Explanation:
Data
real value = 22.48%
estimated value = 22.57 %
Formula
% error = |real value - estimated value|/real value x 100
%error = |22.48 - 22.57|/22.48 x 100
% error = |-0.09|/22.48 x 100
%error = 0.09/22.48 x 100
% error = 0.004 x 100
% error = 0.4
Isotopes are atoms of the same element that differ in the number of neutrons.
Remember that all the atoms of an element have the same number of protons. So the only difference between isotopes of an element is the number of neutrons.
86 Sr means that the mass number of this isotope is 86. Also, remember that the mass number is the number of protons plus the number of neutrons.
87 Sr means that the mass number of this isotope is 87.
So, 86 Sr and 87 Sr differ 1 neutron.
Answer: 1 neutron
The average weight of an atom of an element, formerly based on the
weight of one hydrogen atom taken as a unit or on 1/16 (0.0625) the
weight of an oxygen atom, but after 1961 based on 1/12 the weight of the
carbon-12 atom.
Answer:
Procedure (2)
Explanation:
Assume the dialyses come to equilibrium in the allotted times.
Procedure (1)
If you are dialyzing 5 mL of sample against 4 L of water, the concentration of NaCl will be decreased by a factor of

Procedure (2)
For the first dialysis, the factor is

After a second dialysis, the original concentration of NaCl will be reduced by a factor of

Procedure (2) is more efficient by a factor of
