Answer:
1.20 M
Explanation:
Convert grams of Na₂CO₃ to moles. (50.84 g)/(105.99 g/mol) = 0.4797 mol
Molarity is (moles of solute)/(liters of solvent) = (0.4797 mol)/(0.400 L) = 1.20 M
<h3><u>Answer;</u></h3>
exceeds evaporation over land
Precipitation<u> exceeds evaporation over land </u>
<h3><u>Explanation;</u></h3>
- <em><u>In order to maintain earths water balance, evaporation exceeds precipitation over oceans but precipitation exceeds evaporation over land.</u></em>
- Water evaporates into the atmosphere from the ocean and to a much lesser extent from the continents. Winds transport this moisture-laden air, often great distances, until conditions cause the moisture to condense into clouds and to precipitate and fall.
- Most precipitation originates by evaporation from the oceans. Over time, water evaporated from the oceans is replenished by inflow of freshwater from rivers and streams.
<span>To calculate the number of moles of aluminum, sulfur, and oxygen atoms in 4.00 moles of aluminum sulfate, al2(so4)3. We will simply inspect the "number" of aluminum, sulfur, and oxygen atoms available per one mole of the compound. Here we have Al2(SO4)3, which means that for every mole of aluminum sulfate, there are 2 moles of aluminum, 3 (1 times 3) moles of sulfur, and 12 (4x3) moles of oxygen. Since we have four moles of Al2(SO4)3 given, we simply multiply 4 times the moles present per 1 mole of the compound. So we have 4x2 = 8 moles of Al, 4x3 = 12 moles of sulfur, and 4x12 = 48 moles of oxygen.
So the answer is:
8,12,48
</span>
Answer:
1.5 moles of Fe produced.
Explanation:
Given data:
Moles of FeO react = 1.50 mol
Moles of iron produced = ?
Solution:
Chemical equation:
FeO + CO → Fe + CO₂
Now we will compare the moles of ironoxide with iron.
FeO : Fe
1 : 1
1.5 : 1.5
Thus from 1.5 moles of FeO 1.5 moles of Fe are produced.
No
Of course not cause it will only locate where the ocean is , it will not show the age.