Answer: sodium amide undergoes an acid -base reaction
Explanation:
sodium amide is a ionic compound and basically exists as sodium cation and amide anion. Amide anion is highly basic in nature and hence as soon as there is amide anion generated in the solution , Due to its very pronounced acidity it very quickly abstracts the slightly acidic proton available on methanol.
This leads to formation of ammonia and sodium methoxide.
Hence sodium amide reacts with methanol and abstracts its only acidic proton and form ammonia and sodium Methoxide.
Hence the 3rd statement is a corrects statement.
So we cannot use methanol for sodium amide because sodium amide itself would react with methanol and the inherent molecular natur of sodium amide would then change.
The 1st and 2nd statements both are incorrect because both the compounds methanol as well as sodium amide have dipole moments and hence are polar molecules.
The 4th statement is also incorrect as both the molecules have dipole moment and hence there would be ion-dipole forces operating between them.
The following reaction occurs:
NaNH₂+CH₃OH→NH₃+CH₃ONa
Vanillin is the common name for 4-hydroxy-3-methoxy-benzaldehyde.
See attached figure for the structure.
Vanillin have 3 functional groups:
1) aldehyde group: R-HC=O, in which the carbon is double bonded to oxygen
2) phenolic hydroxide group: R-OH, were the hydroxyl group is bounded to a carbon from the benzene ring
3) ether group: R-O-R, were hydrogen is bounded through sigma bonds to carbons
Now for the hybridization we have:
The carbon atoms involved in the benzene ring and the red carbon atom (from the aldehyde group) have a <u>sp²</u> hybridization because they are involved in double bonds.
The carbon atom from the methoxy group (R-O-CH₃) and the blue oxygen's have a <u>sp³</u> hybridization because they are involved only in single bonds.
The answer is: hydrogen peroxide, H2O2.
H₂O₂(hydrogen peroxide) is pale blue, clear, inorganic liquid.
It is liquid because hydrogen bonds between molecules.
Hydrogen bond is an electrostatic attraction between two polar groups that occurs when a hydrogen atom (H), covalently bound to a highly electronegative atom such as flourine (F), oxygen (O) and nitrogen (N) atoms.
Because of hydrogen bonds, hydrogen peroxide has higher melting and boiling temperatures than other molecules.
Molar mass of oxygen gas:
O₂ = 16 * 2 = 32.0 g/mol
1 mole O₂ -------------- 32.0
9.05 mole O₂ ---------- ?
Mass = 9.05 * 32.0
Mass = 289.6 g of O₂
hope this helps!
For stainless steel different kinds of compositions are used. Based on that different series of stainless steel has been coined.
1. Series 200 - Iron alloyed with <span>chromium, nickel and manganese.
2. Series 300 - It has
a. Stainless Steel 304 - it has composition of 18% chromium and 8% Nickel
b. </span>Stainless Steel 316 - This has 18% chromium and 10% Nickel
Each kind of stainless steel is of different cost and has different applications.