A force of charge that drive around a circuit is call electeons
(a) The moment of inertia of the wheel is 78.2 kgm².
(b) The mass (in kg) of the wheel is 1,436.2 kg.
(c) The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
<h3>
Moment of inertia of the wheel</h3>
Apply principle of conservation of angular momentum;
Fr = Iα
where;
- F is applied force
- r is radius of the cylinder
- α is angular acceleration
- I is moment of inertia
I = Fr/α
I = (200 x 0.33) / (0.844)
I = 78.2 kgm²
<h3>Mass of the wheel</h3>
I = ¹/₂MR²
where;
- M is mass of the solid cylinder
- R is radius of the solid cylinder
- I is moment of inertia of the solid cylinder
2I = MR²
M = 2I/R²
M = (2 x 78.2) / (0.33²)
M = 1,436.2 kg
<h3>Angular speed of the wheel after 4 seconds</h3>
ω = αt
ω = 0.844 x 4
ω = 3.376 rad/s
Thus, the moment of inertia of the wheel is 78.2 kgm².
The mass (in kg) of the wheel is 1,436.2 kg.
The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
Learn more about moment of inertia here: brainly.com/question/14839816
#SPJ1
Answer:
When energy contained in coal is turned into heat, and then into electrical energy. As boiling water heated by the burning coal is cooled, steam forges from these cone-shaped cooling towers.
It's hard to tell what's going on down there in the corner with the resistor and the ammeter. There seems to be as many as 3 or 4 wires in and out of the ammeter, which would be wrong. A real ammeter only has two ... one in and one out. (Same for a resistor.)
It's hard to say whether this circuit works, until we can clearly understand how everything is hooked up in that corner of the drawing.