Gap junctions in the intercalated discs allow impulses to be spread across the heart more quickly. This is because gap junctions allow particles/signals to pass through, thus making cells with gap junctions more able to interact.
One more thing—you posted this in the physics section rather than biology.
Answer:
A. 26.17 B. 1.17 C. 30.86 D. 5.86
Explanation:
Answer:
Second order line appears at 43.33° Bragg angle.
Explanation:
When there is a scattering of x- rays from the crystal lattice and interference occurs, this is known as Bragg's law.
The Bragg's diffraction equation is :
.....(1)
Here n is order of constructive interference, λ is wavelength of x-ray beam, d is the inter spacing distance of lattice and θ is the Bragg's angle or scattering angle.
Given :
Wavelength, λ = 1.4 x 10⁻¹⁰ m
Bragg's angle, θ = 20°
Order of constructive interference, n =1
Substitute these value in equation (1).

d = 2.04 x 10⁻¹⁰ m
For second order constructive interference, let the Bragg's angle be θ₁.
Substitute 2 for n, 2.04 x 10⁻¹⁰ m for d and 1.4 x 10⁻¹⁰ m for λ in equation (1).


<em>θ₁ </em>= 43.33°
Answer:
The answer is "
"
Explanation:
Using the law of conservation for energy. Equating the kinetic energy to the potential energy.
Calculating the closest distance:


Answer: There is not work done at the door because the door did not move.
Explanation: Work is defined as the movement done by a force.
So if you move to apply a force F in an object and you move it a distance D, the work applied on the object is
W = F*D
In this case, the secret agent pushes against the door, so there is a force, but the agent does not move the door, so D = 0, so there is no motion of the door, which implies that there is no work done at the door.