A region around a charged partical or object. Let me know if this works. Hope I could help you.
The maximum speed of the donkey is 10.72m/s
The question is based on the principle of motion in one dimension and hence formulas of motion in one dimension can be applied.
It is given that donkey attains an acceleration of 1.6 m/s^2
The time taken to accelerate to given speed is 6.7 seconds
We use the formula v=u + at to find the fastest speed
v is the final or maximum speed
u is the initial speed which in this case is 0 as the donkey is at rest
a is the acceleration of the donkey
t is the time taken in seconds
v = u + at
v= 0 + 1.6 x 6.7
= 10.72 m/s
Hence the donkey obtains the speed of 10.72 m/s
For further reference:
brainly.com/question/24478168?referrer=searchResults
#SPJ9
Explanation:
Precision represents that how close the different measurements of the sample one take are to one another.
- One can increase the precision in lab by paying attention to each and every detail.
- Usage of the equipment properly and also increasing the sample size.
-
Ensuring that the equipment is calibrated properly. They should be clean and functioning. Using equipment which is not functioning correctly can cause results to swing wildly and also bits of the debris stuck to the equipment can influence the measurements of the mass and the volume.
- Each measurement must be taken multiple times, especially if experiments in which combining of the substances in specific amounts is involved.
Answer:
0.96 m
Explanation:
First, convert km/h to m/s.
162.3 km/h × (1000 m/km) × (1 hr / 3600 s) = 45.08 m/s
Now find the time it takes to move 20 m horizontally.
Δx = v₀ t + ½ at²
20 m = (45.08 m/s) t + ½ (0 m/s²) t²
t = 0.4436 s
Finally, find how far the ball falls in that time.
Δy = v₀ t + ½ at²
Δy = (0 m/s) (0.4436 s) + ½ (-9.8 m/s²) (0.4436 s)²
Δy = -0.96 m
The ball will have fallen 0.96 meters.