Answer:
A. Gamma decay
Explanation:
A form of nuclear decay in which the atomic number is unchanged is a gamma decay.
The atom has undergone a gamma decay.
In a gamma decay, no changes occur to the mass and atomic number of the substance.
- Gamma rays have zero atomic and mass numbers.
- When they cause decay, they cause no change to the mass and atomic numbers.
- They simply produce gamma rays during such reactions and these rays are very energetic.
A box is sliding up an incline that makes an angle of 14.0° with respect to the horizontal. the coefficient of kinetic friction between the box and the surface of the incline is 0.180. the initial speed of the box at the bottom of the incline is 2.20 m/s. how far does the box travel along the incline before coming to rest?
Answer:
HERE'S MY UNDERSTANDING OF THE DIFFERENCE
The speed of cart b is 6m/s while the total momentum of the systmen is 4200 kg m/s
<h3>Conservation of Linear Momentum</h3>
Given Data
- Mass of cart one M1 = 150kg
- Initial Velocity U1 = 8m/s
Mass of cart two M2 = 150kg
Velocity U2 = 6m/s
Applying the principle of conservation of linear momentum we have
M1U1+M2U2 = M1V1+ M2V2
a. what is the speed of cart b after collision
substituting our given data we have
150*8+ 150*6 = 150*5+150*V2
1200 + 900 = 1200+ 150V2
2100 - 1200 = 150V2
900 = 150V2
Divide both sides by 150
V2 = 900/150
V2 = 6m/s
b. what is the total momentum of the system before and after collision
Total Momentum in the system is
Total momentum = Momentum before Impact+ Momentum after Impact
Total momentum = M1U1+M2U2 + M1V1+ M2V2
Total momentum = 1200 + 900 + 1200+ 900
Total momentum = 4200 kg m/s
Learn more about Conservation of Linear Momentum here:
brainly.com/question/7538238
Answer:
period of oscillations is 0.695 second
Explanation:
given data
mass m = 0.350 kg
spring stretches x = 12 cm = 0.12 m
to find out
period of oscillations
solution
we know here that force
force = k × x .........1
so force = mg = 0.35 (9.8) = 3.43 N
3.43 = k × 0.12
k = 28.58 N/m
so period of oscillations is
period of oscillations = 2π × ................2
put here value
period of oscillations = 2π ×
period of oscillations = 0.6953
so period of oscillations is 0.695 second