1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arada [10]
3 years ago
14

Analyze at the image below and answer the question that follows.

Physics
2 answers:
Rudiy273 years ago
8 0

the correct answer is c.

Rufina [12.5K]3 years ago
3 0

Answer:

C

Explanation:

correct on edgenuity

You might be interested in
What is the massof the largest ruby?
alexandr402 [8]
I think the answer is 2283g
4 0
3 years ago
What is the density of 18.0-karat gold that is a mixture of 18 parts gold, 5 parts silver, and 1 part copper? (These values are
nexus9112 [7]

Answer:

Density of 18.0-karat gold mixture is 15.58 g/cm^3.

Explanation:

A mixture of 18 parts gold, 5 parts silver, and 1 part copper.

Let mass of gold be 18x

Let the mass of silver be 5x

Let the mass of copper be 1x

The density of gold = 19.32g/cm^3

The density of silver = 10.1g/cm^3

The density of copper =8.8g/cm^3

Volume=\frac{Mass}{Density}

Volume of the gold in the mixture = V_1=\frac{18x}{19.32 g/cm^3}

Volume of the silver in the mixture = V_2=\frac{5x}{10.1 g/cm^3}

Volume of the copper in the mixture = V_3=\frac{1x}{8.8 g/cm^3}

Mass of the mixture = M = 18x+5x+1x =24x

Volume of the mixture = V_1+V_2+V_3

Density of the mixture:

\frac{M}{V_1+V_2+V_3}=15.58 g/cm^3

8 0
3 years ago
During a baseball game, a batter hits a high pop-up. If the ball remains in the air for 4.02 s, how high above the point where i
alukav5142 [94]

Answer:

d = 19.796m

Explanation:

Since the ball is in the air for 4.02 seconds, the ball should reach the maximum point from the ground in half the total time, therefore, t=2.01s to reach maximum height. At the maximum height, the velocity in the y-direction is 0.

So we know t=2.01, vi=0, g=a=9.8m/s and we are solving for d.

Next, you look for a kinematic equation that has these parameters and the one you should choose is:

d=vt+\frac{1}{2}at^2

Now by substituting values in, we get

d=(0\frac{m}{s})*(2.01s)+\frac{1}{2}(9.8\frac{m}{s^2})(2.01)^2

d = 19.796m

7 0
3 years ago
A 4.00-g bullet, traveling horizontally with a velocity of magnitude 400 m/s, is fired into a wooden block with mass 0.650 kg ,
Maru [420]

Answer:

a) Coefficient of kinetic friction between block and surface = 0.12

b) Decrease in kinetic energy of the bullet = 247.8 J

c) Kinetic energy of the block at the instant after the bullet passes through it = 0.541 J

Explanation:

Given,

Mass of bullet = 4.00 g = 0.004 kg

Initial velocity of the bullet = 400 m/s

Mass of wooden block = 0.65 kg

Initial velocity of the wooden block = 0 m/s (since it was initially at rest)

Final velocity of the bullet = 190 m/s

Distance slid through by the block after the collision = d = 72.0 cm = 0.72 m

Let the velocity of the wooden block after collision be v

According to the law of conservation of momentum,

Momentum before collision = Momentum after collision

Momentum before collision = (Momentum of bullet before collision) + (Momentum of wooden block before collision)

Momentum of bullet before collision = (0.004×400) = 1.6 kgm/s

Momentum of wooden block before collision = (0.65)(0) = 0 kgm/s

Momentum after collision = (Momentum of bullet after collision) + (Momentum of wooden block after collision)

Momentum of bullet after collision = (0.004×190) = 0.76 kgm/s

Momentum of wooden block after collision = (0.65)(v) = (0.65v) kgm/s

Momentum balance gives

1.6 + 0 = 0.76 + 0.65v

0.65v = 1.6 - 0.76 = 0.84

v = (0.84/0.65)

v = 1.29 m/s

The velocity of the wooden block after collision = 1.29 m/s

To obtain the coefficient of kinetic friction between block and surface, we will apply the work-energy theorem.

The work-energy theorem states that the work done in moving the block from one point to another is equal to the change in kinetic energy of the block between these two points.

The points to consider are the point when the block starts moving (immediately after collision) and when it stops as a result of frictional force.

Mathematically,

W = ΔK.E

W = workdone by the frictional force in stopping the wooden block (since there is no other horizontal force acting on the block)

W = -F.d (minus sign because the frictional force opposes motion)

d = Distance slid through by the block after the collision = 0.72 m

F = Frictional force = μN

where N = normal reaction of the surface on the wooden block and it is equal to the weight of the block.

N = W = mg

F = μmg

W = - μmg × d = (-μ)(0.65)(9.8) × 0.72 = (-4.59μ) J

ΔK.E = (final kinetic energy of the block) - (initial kinetic energy of the block)

Final kinetic energy of the block = 0 J (since the block comes to a rest)

(Initial kinetic energy of the block) = (1/2)(0.65)(1.29²) = 0.541 J

ΔK.E = 0 - 0.541 = - 0.541 J

W = ΔK.E

-4.59μ = -0.541

μ = (0.541/4.59)

μ = 0.12

b) The decrease in kinetic energy of the bullet

(Decrease in kinetic energy of the bullet) = (Kinetic energy of the bullet before collision) - (Kinetic energy of the bullet after collision)

Kinetic energy of the bullet before collision = (1/2)(0.004)(400²) = 320 J

Kinetic energy of the bullet after collision = (1/2)(0.004)(190²) = 72.2 J

Decrease in kinetic energy of the bullet = 320 - 72.2 = 247.8 J

c) Kinetic energy of the block at the instant after the bullet passes through it = (1/2)(0.65)(1.29²) = 0.541 J

Hope this Helps!!!

4 0
2 years ago
A 120-V motor has mechanical power output of 2.50hp. It is 90.0% efficient in converting power that it takes in by electrical tr
EastWind [94]
  1. The current in this motor is equal to 17.27 Ampere.
  2. The energy delivered to this motor in 3.00 hours is equal to 22.38 Megajoules.
  3. At $0.110/kWh, the cost to run the motor for 3.00 hours is equal to $0.684.

<h3>How to determine the current (in A) delivered to the motor?</h3>

Assuming this electric motor is a single-phase motor and it operates by using DC current, its mechanical power output would be given by:

W = ηIV

Making current (I) the subject of formula, we have:

I = ηV/W

Substituting the given parameters into the formula, we have;

I = (2.50 × 0.746 × 1000)/(0.9 × 120)

I = 1,865/108

Current, I = 17.27 Ampere.

For the energy delivered to this motor, we have:

First of all, we would determine the power delivered to this motor as follows:

Power, P = IV

Power, P = 17.27 × 120

Power, P = 2,072.4 Watt.

Therefore, the energy delivered to this motor in 3.00 hours is given by:

Energy = power × time

Energy = 2,072.4 × 3.00 × 3,600 × 1/1000000

Energy = 22.38 Megajoules.

<h3>How to determine the cost?</h3>

At $0.110/kWh, the cost to run the motor for 3.00 hours is given by:

Cost = 0.110 × 22.38 × 0.278

Cost = $0.684.

Read more on energy here: brainly.com/question/15567897

#SPJ4

Complete Question:

A 120-V motor has mechanical power output of 2.50 hp. It is 90.0% efficient in converting power that it takes in by electrical transmission into mechanical power.

(a) Find the current in the motor.

(b) Find the energy delivered to the motor by electrical transmission in 3.00 h of operation.

(c) If the electric company charges $0.110/kWh, what does it cost to run the motor for 3.00 h?

6 0
1 year ago
Other questions:
  • An 80-kg astronaut becomes separated from his spaceship. He is 15.0 m away from it and at rest relative to it. In an effort to g
    6·1 answer
  • What unit of measure would you use for mass?
    7·1 answer
  • If you could travel to a star 25 light-years away and return to earth at nearly the speed of light, how much time would elapse o
    11·2 answers
  • How do you calculate the rate of change of velocity
    6·1 answer
  • An object with a mass of 100 grams is dropped from a certain height and has a velocity of 60 meters/second. if the potential ene
    5·1 answer
  • What is the logical relationship between the following two categorical propositions? Some food is not edible. Some food is inedi
    14·1 answer
  • PLS HELP DUE IN 30 MINS!!! True or false: A large-amplitude pulse travels at a faster speed than a small-amplitude pulse. Explai
    12·2 answers
  • The diagrams show two planets of different masses with identical orbiting satellites. Select all the conditions that would incre
    5·1 answer
  • Calculate the following
    8·1 answer
  • What are the different types of topology?​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!