To solve the problem we will simply perform equivalence between both expressions. We will proceed to place your units and develop your internal operations in case there is any. From there we will compare and look at its consistency


At the same time we have that



Therefore there is not have same units and both are not consistent and the correct answer is B.
If you are pushing the coin across the table at a constant rate, the friction of the table and the horizontal force of your hand pushing are equal, and the coin itself moves at a constant rate. If you push a coin and let it go, there is no horizontal force keeping the coin going. Friction slows the coin to a stop. In both cases, the gravitational downward pull of Earth is equally but oppositely resisted by the upward push of table on the coin.
Force can be expressed as the product of mass and acceleration. Mathematically, that's F = m(a). Plugging the given into the equation, we have F = (13.5 kg)(9.5 m/s²) = 128.3 kg.m/s² or 128.3 N<span>. </span>
Answer:
The answer is 24cm
Explanation:
This problem bothers on the curved mirrors, a concave type
Given data
Object height h= 5cm
Object distance = 12cm
Focal length f=24cm
Let the image distance be v=?
Applying the formula we have
1/v +1/u= 1/f
Substituting our given data
1/v+1/12=1/24
1/v=1/24-1/12
1/v=1-2/24
1/v=-1/24
v= - 24cm
This implies that the image is on the same side as the object and it is real