5 is the answer I’m pretty sure
Answer:
Force, 
Explanation:
Given that,
A potential energy function for a system in which a two-dimensional force acts is of the form of :

We need to find the force that acts at the point (x, y). The force in 2 dimensional with components is given by :

So, the force acting at the point (x,y) is
. Hence, this is the required solution.
Explanation:
Given:
u = 20 m/s
a = 5 m/s^2
v = 30 m/s
t = ?
Use the first kinematic equation of motion:
v = u + at
t = (v - u)/a = 10/5 = 2 seconds
-- Since it's a cube, its length, width, and height are all the same 4 cm .
-- Its volume is (length x width x height) = 64 cm³ .
-- Density = (mass) / (volume)
= (176 g) / (64 cm³)
= 2.75 gm/cm³ .
The maximum force of static friction is the product of normal force (P) and the coefficient of static friction (c). In a flat surface, normal force is equal to the weight (W) of the body.
P = W = mass x acceleration due to gravity
P = (0.3 kg) x (9.8 m/s²) = 2.94 kg m/s² = 2.94 N
Solving for the static friction force (F),
F = P x c
F = (2.94 N) x 0.6 = 1.794 N
Therefore, the maximum force of static friction is 1.794 N.