Answer:
D. transparent.
Explanation:
A material that transmits nearly all the light in a ray because it offers little resistance to the light is <u>transparent.</u>
A transparent material allows light to pass through them with little or no resistance enabling them see-through. A material that transmits nearly all the light rays that pass through it because it offers little resistance to the light is TRANSPARENT. Examples of transparent materials are water, glass (flint and crown), air, and diamond.
Answer:
Wavelength, frequency and the photon energy changes as the one goes across the ranges of the electro-magnetic radiations.
Explanation:
Electro-magnetic radiations may be defined as the form of energy that is radiated or given by the electro-magnetic radiations. The visible light that we can see is the one of the electro-magnetic radiations. Other forms are the radio waves, gamma waves, UV rays, infrared radiations, etc.
The wavelength of the radiations decreases as we go from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The frequency of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The photon energy of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
<span>In the question,' when you are sitting a few feet from the fire, your skin feels warmed. What form of heat transfer are acting to transfer heat from the fire to your skin, the correct option is A, that is, convection and radiation. Heat transfer is defined as the exchange of thermal energy between physical systems. The rate at which the heat is transfer depends on the temprature of the system and the properties of the intervening medium through which the heat is been transfered. There are three basic modes of heat transfer, these are: conduction, convection and radiation. Conduction is defined as the transfer of heat between two bodies through physical contact. When two bodies which have different temprature come in contact, there will be a transfer of heat energy between them until the two of them have the same temprature. Conduction usually occurs in solids and liquids; it occurs in gases also but it is extremely slow. Convection is the process by which heat is transfer in fluids, that is, liquids and gases. This is how convection operates: when a fluid is heated, it expands and it becomes lighter, this makes it to rise upward and move to the cooler part of the container, as it rises, it will be replaced by the unheated surrounding particles. This cycle continues until heat is evenly distributed all through the fluid. There are two types of convection: natural and forced convection. The heating of the earth surface by the sun ray is an example of natural convection while the air conditioner we use at home operates by mean of forced convection. Both conduction and convection require matter for heat transfer. Radiation is the transfer of heat from one place to another through electromagnetic waves. The hot body transfer heat by emitting electromagnetic waves. The properties of the electromagnetic waves depend on the temperature of the body. The higher the temperature the more intense the rate of emission of radiation. Radiation can occur in all objects and does not require matter for heat transfer. The heat of the sun reaches the earth surface by means of radiation. In the question given, as the air surrounding the fire were heated they rise and were replaced by the unheated air particles. The continuation of this cycle makes the heat energy to be transferred to the objects around. Thus, the heat from the fire was transferred via convection and radiation. </span>
D do.
All 3 resistors are connected directly across the battery.
Answer:
a

b

Explanation:
From the question we are told that
The spring constant is 
The maximum extension of the spring is 
The number of oscillation is 
The time taken is 
Generally the the angular speed of this oscillations is mathematically represented as

where T is the period which is mathematically represented as

substituting values


Thus


this angular speed can also be represented mathematically as

=> 
substituting values


In SHM (simple harmonic motion )the equation for velocity is mathematically represented as

The velocity is maximum when

=> 
=> 
=> 