Answer:
(a) 6.567 * 10^15 rev/s or hertz
(b) 8.21 * 10^14 rev/s or hertz
Explanation:
Fn= 4π^2k^2e^4m * z^2/(h^3*n^3)
Where Fn is frequency at all levels of n.
Z = 1 (nucleus)
e = 1.6 * 10^-19c
m = 9.1 * 10^-31 kg
h = 6.62 * 10-34
K = 9 * 10^9 Nm2/c2
(a) for groundstate n = 1
Fn = 4 * π^2 * (9*10^9)^2*(1.6*10^-19)^4* (9.1 * 10^-31) * 1 / (6.62 * 10^-31)^3 = 6.567 * 10^15 rev/s
(b) first excited state
n = 1
We multiple the groundstate answer by 1/n^3
6.567 * 10^15 rev/s/ 2^3
F2 = 8.2 * 10^ 14 rev/s
Answer:
= 1.75 × 10⁻⁴ m/s
Explanation:
Given:
Density of copper, ρ = 8.93 g/cm³
mass, M = 63.5 g/mol
Radius of wire = 0.625 mm
Current, I = 3A
Area of the wire,
=
Now,
The current density, J is given as
= 2444619.925 A/mm²
now, the electron density, 
where,
=Avogadro's Number

Now,
the drift velocity, 

where,
e = charge on electron = 1.6 × 10⁻¹⁹ C
thus,
= 1.75 × 10⁻⁴ m/s
250kg
would have momentum that is being caried by the impact of the trow
The answer for this question is b because it says how far it goes before he begins to take brake
Answer:
Option C
Explanation:
According to the question:
Force exerted by the team towards south, F = 10 N
Force exerted by the opposite team towards North, F' = 17 N
Net Force, 

Thus the force will be along the direction of force whose magnitude is higher
Therefore,
towards North