1. Nickel (II) Bromide
2. Iron (II) Oxide
3. Iron (III) Oxide
4. Tin (IV) Chloride
5. Lead (IV) tetrachloride
6. Tin (II) Bromide
7. Chromium (III) Phosphide
8. Iron (II) Fluoride
9. Gold (III) Chloride
I hope this helps. I'm more than 100% sure that all the answers except for number 7 are correct. I knew all of them off the top of my head except for this one. I hope the other answer has the correct answer for that one. Good luck and have a great day.
The Henderson-Hasselbalch approximation is for conjugate acid-base pairs in a buffered solution. We're going to call HA a weak acid, and A- its conjugate base. The equation is as follows:
pH = pKa + log([base]/[acid]), where the brackets imply concentrations
Plugging in our symbols and the pKa value, the equation becomes:
pH = 4.874 + log([A-]/[HA])
Answer:
A
Explanation:
hail will fall push it back up making it bigger comes back down
Nrjrjffjjdrjrjrjejejdjrjrjrjejrrjdjdkdkrjjrjrjrrjrjrjrjrjrjrjrjrkrk
Answer:
0.17 moles
Explanation:
In the elements of the periodic table, the atomic mass = molar mass. <u>Ex:</u> Atomic mass of Carbon is 12.01 amu which means molar mass of Carbon is also 12.01g/mol.
In order to find the # of moles in a 12 g sample of NiC-12, we will need to multiply the number of each atom by its molar mass and then add the masses of both Nickel and C-12 found in the periodic table:
- Molar Mass of Ni (Nickel): 58.69 g/mol
- Molar Mass of C (Carbon): 12.01 g/mol
Since there's just one atom of both Carbon and Nickel, we just add up the masses to find the molar mass of the whole compound of NiC-12.
- 58.69 g/mol of Nickel + 12.01 g/mol of Carbon = 70.7 g/mol of NiC-12
There's 12g of NiC-12, which is less than the molar mass of NiC-12, so the number of moles should be less than 1. In order to find the # of moles in NiC-12, we need to do some dimensional analysis:
- 12g NiC-12 (1 mol of NiC-12/70.7g NiC-12) = 0.17 mol of NiC-12
- The grams cancel, leaving us with moles of NiC-12, so the answer is 0.17 moles of NiC-12 in a 12 g sample.
<em>P.S. C-12 or C12 just means that the Carbon atom has an atomic mass of 12amu and a molar mass of 12g/mol, or just regular carbon.</em>