Answer:Four types of vaccines are currently available: Live virus vaccines use the weakened (attenuated) form of the virus. The measles, mumps, and rubella (MMR) vaccine and the varicella (chickenpox) vaccine are examples
Answer:
Explanation:
*Since the titration is between the strong acid HCl and the strong base Ca(OH)2, the pH at the equivalent point should be 7. On interpolation, we will obtain that 9.50mL and 9.82 mL of HCl is required to completely neutralized the given Ca(OH)2 solution.
*pH at the equivalence point =7
we know that pH + pOH = 14
Hence pOH= 14-7=7
pOH= -log(OH-)
The concentration of OH-= 10-pH= 1X10-7 M
One reason for the low solubility may be the higher reaction temperature, Another reason is the common ion effect.
Based on the information provided, it appears that you will need to calculate the amount of heat absorbed by the water from the peanut that was burned. We are given the following information:
specific heat capacity, c = 1.0 cal/g°C
mass of water = 76 g
Ti = 22°C
Tf = 46°C
change in temperature, ΔT = 24°C
We can use the formula q = mcΔT to measure the amount of energy absorbed by the water to increase in tempature:
q = (76 g)(1.0 cal/g°C)(24°C)
q = 1824 cal
Therefore, the water absorbed 1824 calories from the peanut that was burned.
Explanation:
Expression for the
speed is as follows.

where,
= root mean square speed
k = Boltzmann constant
T = temperature
M = molecular mass
As the molecular weight of oxygen is 0.031 kg/mol and R = 8.314 J/mol K. Hence, we will calculate the value of
as follows.

= 
= 498.5 m/s
Hence,
for oxygen atom is 498.5 m/s.
For nitrogen atom, the molecular weight is 0.028 kg/mol. Hence, we will calculate its
speed as follows.

= 
= 524.5 m/s
Therefore,
speed for nitrogen is 524.5 m/s.
Answer:

Explanation:
Given
Required
Calculate the number of moles
We'll apply the following formula to solve this question

Where

The above equation is an illustration of the ideal gas law
Substitute values for p, V, R and T in:




<em>Hence, there are 243.605 moles</em>