The product of this reaction is a halohydrin as shown here.
<h3>What are the products?</h3>
We have a reaction that first involves the formation an alkene as the bases are used on the first substrate. The alkene that is thus created is now able to react with the bromine in water.
The first step of the reaction is where the multiple bond is created and this multiple bond is what can now go on to participate in a chemical reaction in the next step of the process of reaction as shown in the image.
Bromine in water is also hat we call bromine water. This bromine water is able to add across a double bond and when that happen we will have a saturated compound. This could also be regarded as halohydrin reaction.
Recall that the first step of the reaction of the alkene with bromine is the formation of a dibromide via the brominium intermediate. This is now followed by reaction with water to form the halohydrin product.
Learn more about organic reaction:brainly.com/question/9585105
#SPJ1
Answer: it will increase the strong nuclear force in the nucleus
Explanation: Labster
Answer:

Explanation:
Hello there!
In this case, since redox reactions are characterized by the presence of a reduction reaction, whereby the oxidation of the element decreases, and an oxidation reaction whereby the oxidation of the element increases.
In such a way, for the given chemical equation, we can see Fe is increasing its oxidation state from 2+ to 3+, which means it is oxidized. On the flip side, Mn is being reduced from 7+ (MnO₄⁻) to 2+ and this, the reduction half-reaction is:

Whereas five electrons are carried.
Regards!
Answer : The final temperature is, 
Explanation :

As we know that,

.................(1)
where,
q = heat absorbed or released
= mass of water at
= 150 g
= mass of water at
= 100 g
= final temperature = ?
= temperature of lead = 
= temperature of water = 
= same (for water)
Now put all the given values in equation (1), we get
![150\times (T_{final}-363)=-[100\times (T_{final}-303)]](https://tex.z-dn.net/?f=150%5Ctimes%20%28T_%7Bfinal%7D-363%29%3D-%5B100%5Ctimes%20%28T_%7Bfinal%7D-303%29%5D)

Therefore, the final temperature is, 
DNA, which is found in chromosomes in the nucleus