Answer:

Explanation:
Given:
Initial volume of the balloon V1 = 348 mL
Initial temperature of the balloon T1 = 255C
Final volume of the balloon V2 = 322 mL
Final temperature of the balloon T2 =
To calculate T1 in kelvin
T1= 25+273=298K
Based on Charles law, which states that the volume of a given mass of a ideal gas is directly proportional to the temperature provided that the pressure is constant. It can be applied using the below formula

T2=( V2*T1)/V1
T2=(322*298)/348

Hence, the temperature of the freezer is 276 K
You can use a graduated cylinder.
The percent yield of a chemical reaction is calculated by dividing the actual yield (determined through experimentation) by the theoretical yield (calculations). The percent yield is a great way of determining the efficiency of a reaction. For this problem, the percent yield is 83.93% as given by the solution:
% yield = (47/56)*100 = 83.93%
Answer:
1.)
2.) 
3.) 2HCl
4.) MgO
5.) Mg and 
6.)
and 
7.)Na and 
8.) 3 aluminums and 3 chlorides
Explanation:
Answer: A.) Removing a few marbles from the petri dish and stirring the rest around as energy is added
B) The high temperature makes the gas molecules spread apart according to Charles's law because this law describes how a gas will behave at constant pressure.
Explanation: The phase transition from solid to liquid involves the use of energy to make the molecules present in solid to break the inter molecular forces and to start moving away from each other as in liquid. The molecules in solid are closely packed whereas in liquids they are loosely packed. Thus less number of molecules are present per unit volume in a liquid. Thus the marbles have to be removed to show less density and the energy has to supplied. Removing all but two marbles from the petri dish and shaking them vigorously as energy is added will give us a more disorderd state called gas in which the molecules are very far apart and the density is least.
B) According to Boyle's law the pressure is inversely proportional to the volume of the gas at constant temperature and constant number of moles.
(At constant temperature and number of moles)
According to Charle's law the volume is directly proportional to the temperature of the gas at constant pressure and constant number of moles.
(At constant pressure and number of moles)
Thus as temperature of the gas increases , the volume also increases, and the density decreases. the gas becomes lighter and thus rises up.