Answer:
6.24 x 10-3 M
Explanation:
Hello,
In this case, for the given dissociation, we have the following equilibrium expression in terms of the law of mass action:
![Ka=\frac{[H_3O^+][BrO^-]}{[HBrO]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BBrO%5E-%5D%7D%7B%5BHBrO%5D%7D)
Of course, water is excluded as it is liquid and the concentration of aqueous species should be considered only. In such a way, in terms of the change
, we rewrite the expression considering an ICE table and the initial concentration of HBrO that is 0.749 M:

Thus, we obtain a quadratic equation whose solution is:

Clearly, the solution is 0.00624 M as no negative concentrations are allowed, so the concentration of BrO⁻ is 6.24 x 10-3 M.
Best regards.
Ultraviolet rays has the most energy
The molar mass should be 14.898g/mol.
I used the equation 100gx(1/xg/mol)x(1mol/2mol)x(16g/mol+x)/1)=103.7 and solve for x.
I found that equation using stoichiometry and the equation 2m+1/2O2-->m2O
The molar mass of the metal I set to x and the molar mass of the metal oxide is 16+x.
Answer;
= C3H5
Explanation and solution;
1 mole of CO2 contains 44 g, of which 12 g are carbon
Thus, mass of carbon in 9.32 g will be;
(12/44) × 9.32 g = 2.542 g
Mass of Hydrogen in 3.18 g of water;
= (2/18) × 3.18 g = 0.353 g
we then find the number of moles;
Moles of carbon ; 2.542 /12 = 0.2118 moles
Moles of Hydrogen = 0.353 moles
The ratios of C ; H ;
= 1 : 0.353 /0.2118
= 1 : 5/3
= 3: 5
Therefore; the empirical formula of the hydrogen carbon is; C3H5