<u><em>Developed countries will see a decrease in natural resources, because their population will decrease.</em></u>
Answer:
we can say here that | v² - u² | is the same for upward as for downward and change in the speed is different here so | v - u | same whenever rock travel up, down for same time and not same distances
Explanation:
given data
base = 3.60 m
speed u = 8 m/s
height = 1.70 m
to find out
check change in speed
solution
we know here formula for v that is
v² = u² - 2gh ............1 for upward speed
v² = u² + 2gh ............2 for projected speed
so here put all value and find v with h = 3.60 - 1.70 = 1.9 m
v² = 8² - 2(9.8) 1.9 = 26.76
v² = 8² + 2(9.8) 1.9 = 101.24
v = 5.173 m/s ..............3
v = 10.061 m/s ...................4
so change in speed form 3 and 4 equation
change in speed = v - u = 8 - 5.173 = 2.827 m/s .................5
change in speed = v - u = 10.061 - 8 = 2.061 m/s ..................6
so now we can say here that | v² - u² | is the same for upward as for downward and change in the speed is different here so | v - u | same whenever rock travel up, down for same time and not same distances
What you know:
Vi=0m/s
Vf=143.8m/s
A=-9.8m/s
d=???
Use the equation Vf^2=Vi^2+2A(d)
Rearrange to isolate d: d=Vf^2/2A
d=(143.8)^2/2(-9.8)
d=20678.4/-19.6
d=-1055m
The tank was released from a height of 1055m
Frost will disturb the smooth flow of air over the wing, unpleasantly
distressing its lifting competence. In other words, this spoils the even flow
of air over the wings, by this means decreasing lifting capability. Also, frost
may avoid the airplane from becoming flying at normal departure speed.
The time taken for the tiny saliva to travel is 0.55 second.
The horizontal distance traveled at speed of 4 m/s is 2.2 m.
The horizontal distance traveled at speed of 20 m/s is 11 m.
<h3>
Time of motion of the tiny saliva</h3>
The time taken for the tiny saliva to travel is calculated as follows;
h = vt + ¹/₂gt²
where;
- v is initial vertical velocity = 0
- g is the acceleration due to gravity
h = 0 + ¹/₂gt²
h = ¹/₂gt²
2h = gt²
t² = 2h/g
t = √(2h/g)
Substitute the given parameters and solve for time of motion;
t = √(2 x 1.5 / 10)
t = 0.55 second
<h3>Horizontal distance traveled at speed of 4 m/s</h3>
X = Vx(t)
X = (4 m/s)(0.55)
X = 2.2 m
<h3>Horizontal distance traveled at speed of 20 m/s</h3>
X = (20)(0.55)
X = 11 m
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1