Answer:
Depends.
Explanation:
Whether the object is going left or right, the speed will stay the same until friction eventually stops it. <em>However, </em>if, for example, we're talking about an object going straight before veering right, then yes, speed <em>does</em> matter. An object will normally have to speed up or slow down momentarily when changing direction to keep itself sustained on the ground.
So, honestly? It really depends on what we're talking about!
Hope this helped!
Source(s) used: None.
Answer:
the speed of the center of mass stays the same
Explanation:
In a system with no energy loss, momentum is conserved if the mass remains constant. The system described has no change in mass, and energy loss is considered negligible. Hence the product of the total mass and the velocity of its center will be a constant. The center of mass stays the same speed.
Answer:
The answer to the question is as follows
The acceleration due to gravity for low for orbit is 9.231 m/s²
Explanation:
The gravitational force is given as

Where
= Gravitational force
G = Gravitational constant = 6.67×10⁻¹¹
m₁ = mEarth = mass of Earth = 6×10²⁴ kg
m₂ = The other mass which is acted upon by
and = 1 kg
rEarth = The distance between the two masses = 6.40 x 10⁶ m
therefore at a height of 400 km above the erth we have
r = 400 + rEarth = 400 + 6.40 x 10⁶ m = 6.80 x 10⁶ m
and
=
= 9.231 N
Therefore the acceleration due to gravity =
/mass
9.231/1 or 9.231 m/s²
Therefore the acceleration due to gravity at 400 kn above the Earth's surface is 9.231 m/s²
Answer:
P = 3.5 D
Explanation:
As we know that convex lens is to be used to make the near point of eye to be correct
So we will have

here we have


now plug in all values into the formula


now for power of lens


so the power in dioptre is
P = 3.5 D
Answer:5.7m/s
Explanation:
Mass=1kg
Initial velocity=u=8m/s
height=h=1.6m
Final velocity =v
Acceleration due to gravity=g=9.8m/s^2
v^2=u^2-2xgxh
v^2=8^2-2x9.8x1.6
v^2=8x8-2x9.8x1.6
v^2=64-31.36
v^2=32.64
Take the square root of both sides
√(v^2)=√(32.64)
v=5.7
Speed at the height of 1.6m is 5.7m/s