Answer:

Explanation:
The electrostatic attraction between the nucleus and the electron is given by:
(1)
where
k is the Coulomb's constant
Ze is the charge of the nucleus
e is the charge of the electron
r is the distance between the electron and the nucleus
This electrostatic attraction provides the centripetal force that keeps the electron in circular motion, which is given by:
(2)
where
m is the mass of the electron
v is the speed of the electron
Combining the two equations (1) and (2), we find

And solving for v, we find an expression for the speed of the electron:

t = 0.527 s
<u>It accelerates for 0.527 s.</u>
<u>Explanation:</u>
We use the formula:
v = u+at
Given:
v = 106 m/s
u = 0 (since no gravity)

So applying the formula,
v = u+at
106 = 0 + 201t
t = 106/201
t = 0.527 s
Answer:
A
Explanation:
A and B are isotopes of one another but the same element
C and D are isotopes of one another but the same element
However, A and B have a different proton count than C and D, indicating different elements because the proton count is equivalent to the atomic number.
No two electrons in an atom or molecule may have the same four electronic quantum numbers, according to the Pauli Exclusion Principle. Only two electrons can fit into an orbital at a time, hence they must have opposing spins.
<h3>What is Pauli's exclusion principle ?</h3>
According to Pauli's exclusion principle, two electrons cannot share the same orbital and must have anti-parallel or opposite spins. Example: Two bonded electrons in a neutral helium atom achieve the opposite spin to occupy the lowest-energy () states.
- It is known as the exclusion principle because, in accordance with it, all other electrons in an atom are excluded from having the same set of specific values for the four quantum numbers as one electron in the atom.
Learn more about Pauli's exclusion principle here:
brainly.com/question/1209706
#SPJ4