Answer:
A) 1.5 v
B) Top plate is at higher voltage than the bottom plate
Explanation:
Battery value set between 0.0 V and 1.5 V
a) The potential difference between the plates
Δ V = V1( potential at top plate) - V2( potential at lower plate )
potential at top plate = 1.5 V
potential at lower plate = 0.0 V
hence potential difference = 1.5 V
b ) The top plate is always connected to the positive terminal of the DC source ( which is at a higher potential )while the bottom plate is connected to the negative terminal of the DC source ( which is at a lower potential )
hence the Top plate is at higher voltage than the bottom plate
Answer: The distance between the man and the plane increasing at a rate of 400ft/s
Explanation: Please see the attachments below
The springs stored energy is transferred to the cube as kinetic energy and then by the slop the KE is converted to height energy.
<span>0.5 . k . x^2 = 0.5 . m . v^2 = m . g . ∆h </span>
<span>0.5 . 50 . (0.1^2) = 0.05 . 9.8 . ∆h </span>
<span>∆h = 0.51 m = 51 cm </span>
<span>This is the height gained </span>
<span>Distance along the slope = ∆h / sin 60 = 0.589 = 59 cm </span>
<span>In the second case, the stored spring energy is converted into height energy AND frictional heat energy. </span>
<span>The height energy is m . g . d sin 60 where d is the distance the cube moves along the slope. </span>
<span>The Frictional energy converted is F . d </span>
<span>F ( the frictional force ) = µ . N </span>
<span>N ( the reaction to the component of the gravity force perpendicular to the surface of the slope ) = m . g . cos60 </span>
<span>Total energy converted </span>
<span>0.5 . k . x^2 = (m . g . dsin60) + (µ . m . g . cos60 . d ) </span>
<span>Solve for d </span>
<span>d = 0.528 = 53 cm</span>
Electromagnetic radiation
Answer:
3.53*10^{-7} m
Explanation:
Photon that can rupture the bonds are those with the energy of the bond dissociation energy. If we want to know the energy for each molecule we have to take into account that:

Hence, we have

but the energy is also:

where h is the Planck's constant and c is the speed of ligth. By replacing we obtain:

hope this helps!