Answer:
The mass of the earth, 
Explanation:
It is given that,
Time taken by the moon to orbit the earth, 
Distance between moon and the earth,
We need to find the mass of the Earth using Kepler's third law of motion as :




So, the mass of the earth is
. Hence, this is the required solution.
Answer:
3054.4 km/h
Explanation:
Using the conservation of momentum
momentum before separation = 5M × 2980 Km/h where M represent the mass of the module while 4 M represent the mass of the motor
initial momentum = 14900 M km/h
let v be the new speed of the motor so that the
new momentum = 4Mv and the new momentum of the module = M ( v + 94 km/h )
total momentum = 4Mv + Mv + 93 M = 5 Mv + 93M
initial momentum = final momentum
14900 M km/h = 5 Mv + 93M
14900 km/h = 5v + 93
14900 - 93 = 5v
v = 2961.4 km/h
the speed of the module = 2961.4 + 93 = 3054.4 km/h
Answer:
The answer is A good luck :P
A closed circle means the number is included and an open circle means its not.