1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandr82 [10.1K]
3 years ago
5

Total resistance across any branch of a circuit can be found by analyzing whether the branch is connected in

Physics
1 answer:
atroni [7]3 years ago
7 0

Answer: A.

series or parallel

Explanation:

Total resistance across any branch of a circuit can be found by analyzing whether the branch is connected in series or parallel.

The resistors are connected either in series or parallel. Therefore, the resistance of resistors across a circle can be calculated in series and parallel.

You might be interested in
A boy throws a ball vertically up it returns the ground after 10 seconds find the maximum height reached by the ball
Akimi4 [234]

Answer:

Approximately 122.625\; {\rm m} (assuming that g = 9.81\; {\rm m\cdot s^{-2}}, the ball was launched from ground level, and that the drag on the ball is negligible.)

Explanation:

Let v_{0} denote the velocity at which the ball was thrown upward.

If the drag (air friction) on the ball is negligible, the ball would land with a velocity of exactly (-v_{0}). The velocity of the ball would be changed from v to (-v_{0})\! (such that \Delta v = (-v_{0}) - v_{0} = (-2\, v_{0})) within t = 10\; {\rm s}.

Also because the drag on the ball is negligible, the acceleration of the ball would be a = -g = -9.81\; {\rm m\cdot s^{-2}}. Thus:

\Delta v = a\, t = 10\; {\rm s} \times (-9.81\; {\rm m\cdot s^{-2}}) = -98.1\; {\rm m\cdot s^{-1}}.

Since \Delta v = (-2\, v_{0}):

-2\, v_{0} = \Delta v = -98.1\; {\rm m\cdot s^{-1}.

\begin{aligned}v_{0} &= \frac{-98.1\; {\rm m\cdot s^{-1}}}{-2}= 49.05\; {\rm m \cdot s^{-1}}\end{aligned}.

The ball reaches maximum height when its velocity is v_{1} = 0\; {\rm m\cdot s^{-1}}. Apply the SUVAT equation x = ({v_{1}}^{2} - {v_{0}}^{2}) / (2\, a) to find the displacement x between the original position (ground level, where v_{0} = 49.05\; {\rm m\cdot s^{-1}}) and the max-height position of the ball (where v_{1} = 0\; {\rm m\cdot s^{-1}}.)

\begin{aligned}x &= \frac{(0\; {\rm m\cdot s^{-1}})^{2} - (49.05\; {\rm m\cdot s^{-1}})^{2}}{2 \times (-9.81\; {\rm m\cdot s^{-2}})} \\ &\approx 122.625\; {\rm m\cdot s^{-1}}\end{aligned}.

7 0
2 years ago
Describe the agronomic significance of the upper and lower plastic limits, and of the plasticity index?​
GarryVolchara [31]

Answer:It shows the size of the range of the moisture contents at which the soil remains plastic. In general, the plasticity index depends only on the amount of clay present. It indicates the fineness of the soil and its capacity to change shape without altering its volume.

4 0
3 years ago
What is a variable that gives location relative to an origin?
AysviL [449]
The variable would be “X”
4 0
3 years ago
Read 2 more answers
At 15°C air is transmitted <br>at 340 m/s. Express this speed<br>in Kilometers per hour.​
EleoNora [17]

Answer:

1224km/hr

Explanation:

To convert from m/s to km/hr

1000m = 1km

Divide both sides by 1000

1m = 1/1000 km................. (1)

60×60 seconds = 1 hr

3600s = 1hr

Divide both sides by 3600

1s = 1/3600 .............(2)

Divide (2) by (1)

1m/s =  1/1000 ÷ 1/3600 km/hr

1m/s = 1/1000 × 3600/1  km/hr

1m/s = 3600/1000  km/hr

1m/s = 3.6 km/hr .............(3)

To convert 340m/s to km/hr

Multiply (3) by 340

1× 340m/s = 3.6 × 340 km/hr

340m/s = 1224km/hr

I hope this was helpful, please mark as brainliest

7 0
3 years ago
Read 2 more answers
Two teams of nine members each engage in a tug of war. Each of the first team’s members has an average mass of 68 kg and exerts
olga2289 [7]

Answer:

a)  a = - 0.106 m/s^2  (←)

b) T = 12215.1064 N

Explanation:

If

F₁ = 9*1350 N = 12150 N   (→)

F₂ = 9*1365 N = 12285 N  (←)

∑Fx = M*a = (M₁  +M₂)*a           (→)

F₁ - F₂ = (M₁  +M₂)*a        

→       a = (F₁ - F₂) / (M₁  +M₂ ) = (12150-12285)N/(9*68+9*73)Kg

→       a = - 0.106 m/s^2            (←)

(b) What is the tension in the section of rope between the teams?

If we apply  ∑Fx = M*a   for the team 1

F₁ - T = - M₁*a  ⇒   T = F₁ + M₁*a  

⇒   T = 12150 N + (9 * 68 Kg)*(0.106 m/s^2)

⇒ T = 12215.1064 N

If we choose the team 2 we get

- F₂ + T = - M₂*a  ⇒   T = F₂ - M₂*a  

⇒   T = 12285 N - (9 * 73 Kg)*(0.106 m/s^2)

⇒ T = 12215.1064 N

4 0
3 years ago
Other questions:
  • 50 g of liquid Y at 10 Celcius and 200 g of liquid Y at 40Celcius are mixed. Final temperature of the mixture is measured as 15
    12·1 answer
  • The temperature is cold if
    5·1 answer
  • Which clue can be used to identify a chemical reaction as a replacement reaction?
    10·2 answers
  • Which statement correctly describes the motion on which an Earth time interval is based?
    9·1 answer
  • The force is proportional to what measurement
    15·1 answer
  • Energy can be blank from one form to another
    14·1 answer
  • A ball at the end of a string of 2.2m length rotates at
    9·2 answers
  • How is color related to wavelength?
    8·1 answer
  • When NASA's Skylab reentered the Earth's atmosphere on July 11, 1979, it broke into a myriad of pieces. One of the largest fragm
    5·1 answer
  • Look at the graph above. It shows how three runners ran a 100 meter race
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!