Total internal reflection causes light to be completely reflected across the boundary between the two media but not transmitted.
<h3>What is total internal reflection?</h3>
The term total internal reflection occurs when light is moving from a denser to a less dense medium such as from glass to air. This phenomenon occurs at the interface between the two media.
There are two conditions necessary for total internal reflection and they are;
1) Light must travel from a denser to a less dense medium
2) The angle of incidence in the denser medium must be greater than the critical angle.
Total internal reflection causes light to be completely reflected across the boundary between the two media but not transmitted.
Learn more about total internal reflection:brainly.com/question/13088998
#SPJ1
Answer:
Period
Explanation:
we know that
The period of a wave is the time required for one complete cycle of the wave to pass by a point.
Answer:
Total distance = 700 m
Displacement = 500 m
Explanation:
Notice that Jed travelled a total of 3 x 100 m = 300 m in the North direction, and 300 m + 100 m = 400 m in the East direction. Therefore the total distance he travelled is: 300 + 400 = 700 m.
But the actual displacement is given by the Pythagorean theorem as the hypotenuse of a right angle triangle of legs 300 m and 400 m:
displacement = 
Answer:
a. 
b. 
c. 
Explanation:
First, look at the picture to understand the problem before to solve it.
a. d1 = 1.1 mm
Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:
To solve the equations we have to convert all units to those of the international system. (mm→m)

μ0 is the constant of proportionality
μ0=4πX10^-7 N*s2/c^2
b. d2=3.6 mm
Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:
J: current density
c: outer radius
b: inner radius
The cilinder's current is negative, as it goes on opposite direction than the wire's current.




c. d3=7.4 mm
Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.
Answer:
v = 2.18m/s
Explanation:
In order to calculate the speed of Betty and her dog you take into account the law of momentum conservation. The total momentum before Betty catches her dog must be equal to the total momentum after.
Then you have:
(1)
M: mass Betty = 40kg
m: mass of the dog = 15kg
v1o: initial speed of Betty = 3.0m/s
v2o: initial speed of the dog = 0 m/s
v: speed of both Betty and her dog = ?
You solve the equation (1) for v:

The speed fo both Betty and her dog is 2.18m/s