The reagents for BaCO₃ is
BaO and CO₂
<em><u>Explanation</u></em>
Reagent is a substance that bring about a chemical reaction when added to a system.
Some reagent may be added to see if a reaction has occurred.
BaO and Co₂ are reagent since they react to produce BaCO₃ as below
BaO(s) + CO₂(g) → BaCO3(s)
M= moles de soluto / litros de solucion
moles de soluto = M. litros de solucion
Moles de soluto = 0.050 M x 1.50 L = 0.075 moles de AgNo3
Answer:
a. 211.7
Explanation:
Iron Pyrite reacts with Oxygen to produce Iron (II) Oxide and Sulphur (IV) Oxide.
The equation is as follows:
4FeS₂₍s₎ + 11O₂₍g₎ → 2Fe₂O₃₍s₎ + 8SO₂₍g₎
From the equation, 4 moles of FeS₂ produce 8 moles of SO₂.
Therefore the reaction ratio is 4:8 or 1:2
198.20 grams of FeS₂ into moles is calculated as follows:
Moles= Mass/RMM
RMM of FeS₂ is 119.9750g/mol.
Number of moles = 198.20/119.9750g/mol
=1.652 moles of FeS₂
The reaction ratio of FeS₂ to SO₂ produced is 1:2
Thus SO₂ produced = 1.652 moles×2/1=3.304 moles
The mass of SO₂ produced =Moles ×RMM
=3.304 moles ×64.0638 g/mol
=211.667 grams
=211.7g
The formula of Iron(III) oxide is Fe2O3
In order to calculate the mass of iron in a given sample of iron(III) oxide, we must first know the mass percentage of iron in iron(III) oxide. This is calculated by:
[mass of iron in one mole of iron(III) oxide/ mass of one mole of iron(III) oxide] * 100
= [(moles of iron * Mr of iron) / (moles of Iron * Mr of Iron + moles of Oxygen * Mr of Oxygen)] * 100
= [(2 * 56) / (2 * 56 + 3 * 16)] * 100
= (112 / 160) * 100
= 70%
Thus, in a 100g sample, the weight of iron will be:
100 * 70%
= 70 grams
Melting is an example of phase change