Answer:
The correct question is:
"Find the energy each gains"
The energy gained by a charged particle accelerated through a potential difference is given by

where
q is the charge of the particle
is the potential difference
For a proton,

And since 
The energy gained by the proton is

For an alpha particle,

Therefore, the energy gained is

Finally, for a singly ionized helium nucleus (a helium nucleus that has lost one electron)

So the energy gained is the same as the proton:

Answer:
The other angle is 120°.
Explanation:
Given that,
Angle = 60
Speed = 5.0
We need to calculate the range
Using formula of range
...(I)
The range for the other angle is
....(II)
Here, distance and speed are same
On comparing both range






Hence, The other angle is 120°
Answer
given,
wavelength of light in air = 700 nm
Wavelength of light in water = 530 nm
We know that speed of light changes when it moves from one medium to another.
And the frequency of the wavelength does not changes if the medium changes.
we also know that,
v = ν λ
From the above equation we can say that if frequency is constant so, with the change in velocity changes wavelength will also change.
Hence, wavelength is the property of the wave which determines color.
To solve this problem it is necessary to apply the concepts related to the flow as a function of the volume in a certain time, as well as the potential and kinetic energy that act on the pump and the fluid.
The work done would be defined as

Where,
PE = Potential Energy
KE = Kinetic Energy

Where,
m = Mass
g = Gravitational energy
h = Height
v = Velocity
Considering power as the change of energy as a function of time we will then have to


The rate of mass flow is,

Where,
= Density of water
A = Area of the hose 
The given radius is 0.83cm or
m, so the Area would be


We have then that,



Final the power of the pump would be,



Therefore the power of the pump is 57.11W
L = r x p = rmv = mr²ω
L = 0.25 x 0.75² x 12.5 = 1.758