Answer:
U = 0.413 J
Explanation:
the potential energy between two charges q1 and q2 is given by the following formula:
(1)
k: Coulomb's constant = 8.98*10^9 NM^2/C^2
q1: first charge = 4.6 μC = 4.6*10^-6 C
q2: second charge = 1.0 μC*10^-6 C
r: distance between charges = 10.0 cm = 0.10 m
You replace the values of all variables in the equation (1):

Hence, the energy between charges is 0.413 J
Answer:

Explanation:
= Intensity of unpolarized light = 
= Angle of the filter = 
Intensity of light is given by

The intensity of light detected by the camera is 
Answer:
-5 V
Explanation:
The charged particle (which is positively charged) moves from point A to B, and its kinetic energy increases: it means that the particle is following the direction of the field, so its potential energy is decreasing (because it's been converted into potential energy), therefore it is moving from a point at higher potential (A) to a point at lower potential (B). This means that the value
vb−va
is negative.
We can calculate the potential difference between the two points by using the law of conservation of energy:

where:
is the change in kinetic energy of the particle
is the charge of the particle
is the potential difference
Re-arranging the equation, we can find the value of the potential difference:

Answer: just do the same thing, but the problems are different
Explanation: try you best