<span>Assuming that the momenta of the two pieces are equal: when they have equal velocities, then
the masses of the two pieces are also equal.
Since there is no force from outside of the system, the center of mass moves on with the same velocity as before the equation. So the two pieces must fly at the side side of the mass center, i.e., they must always be at 90° to the side of the mass center. Otherwise it would not be the mass center, respectively the pieces would not have equal velocities.
This is only possible, when the angle of their velocity with the initial direction is 60°.
Because, cos (60°) = 1/2 = v/(2v).</span>
Answer:
40
Explanation:
Mechanical advantage = effort arm / load arm
MA = 20 cm / 0.5 cm
MA = 40
Answer:
Explanation:
For resistance of a wire , the formula is as follows
R = ρ L / S
where ρ is specific resistance , L is length and S is cross sectional area
Given L = 14 000 m ,
S = 4.8 x 10⁻⁴ m²
specific resistance of aluminum = 2.8 x 10⁻⁸ ohm-meter
Putting the values in the formula
R = 2.8 x 10⁻⁸ x 14 x 10³ / (4.8 x 10⁻⁴ )
R = 0.8167 ohm .
= .82 ohm .
Answer:
n = 1.523
Explanation:
Snell's law
1.273sin32.89 = nsin26.99