From A to B its 5 ohm.
above shown 6 and 12 ohm resistors are in parallel to short circuit hence their equivalent resistance is zero.
(Current doesnt flow through a resisstor if there is a Short circuit alternate.
Here we have mass that moves at ceratin speed. This means that we have momentum. The law that must be observed is law of conservation of momentum. It states that momentum before certain event is equal to a momentum after that event. Here we have three masses so we can write this as:

Before the firecracker blows a coconut does not move, so left side is equal to 0:

We know that m1=m2=m and m3=2m. Also we are asked to find v3f so we can rewrite formula:

We must take in consideration that two parts with same mass do not move in same direction. The center of mass of these two parts moves between them at angle of 45° with respect to both south and west. The speed of a center of mass is:

This speed we can insert into formula for v3f:

We can see that part of a coconut with biggest mass has same speed as center of mass of two other parts. Negative sign shows that direction is opposite to direction of two pats. Biggest part moves towards north-east.
Explanation:
Contact, vision, sound, flavor, and smell are all markers of energy transformations. The most basic example would be when we notice something has begun to pass through vision. Whenever an entity accelerates or slows down, energy is constantly transformed.
Neptune would have a slower orbit i just did this
Answer:
The initial velocity of the snowball was 22.21 m/s
Explanation:
Since the collision is inelastic, only momentum is conserved. And since the snowball and the box move together after the collision, they have the same final velocity.
Let
be the mass of the ball, and
be its initial velocity; let
be the mass of the box, and
be its velocity; let
be the final velocity after the collision, then according to the law of conservation of momentum:
.
From this we solve for
, the initial velocity of the snowball:

now we plug in the numerical values
,
,
, and
to get:


The initial velocity of the snowball is 22.21 m/s.
<em>P.S: we did not take vectors into account because everything is moving in one direction—towards the west.</em>