V₁(O2) = 6.50<span> L
</span>p₁(O2) = 155 atm
V₂(acetylene) = <span>4.50 L
</span>p₂(acetylene) =?
According to Boyle–Mariotte law (At constant temperature and unchanged amount of gas, the product of pressure and volume is constant) we can compare two gases that have ideal behavior and the law can be usefully expressed as:
V₁/p₁ = V₂/p₂
6.5/155 = 4.5/p₂
0.042 x p₂ = 4.5
p₂ = 107.3 atm
Answer:
Option C. 210 J.
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Velocity (v) = 18 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Total Mechanical energy (ME) =?
Next, we shall determine the potential energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Acceleration due to gravity (g) = 9.8 m/s²
Potential energy (PE) =?
PE = mgh
PE = 0.75 × 9.8 × 12
PE = 88.2 J
Next, we shall determine the kinetic energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Velocity (v) = 18 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.75 × 18²
KE = ½ × 0.75 × 324
KE = 121.5 J
Finally, we shall determine the total mechanical energy of the plane. This can be obtained as follow:
Potential energy (PE) = 88.2 J
Kinetic energy (KE) = 121.5 J
Total Mechanical energy (ME) =?
ME = PE + KE
ME = 88.2 + 121.5
ME = 209.7 J
ME ≈ 210 J
Therefore, the total mechanical energy of the plane is 210 J.
The answer should be d because they are constantly rotating
Answer:c
Explanation: because if you work it in a paper it should like lil wit is straight the numbers are going up by 16