Answer:
increasing the number of molecules that have sufficient kinetic energy to react.
Explanation:
An increase in temperature affects the reaction rate by increasing the number of molecules that have sufficient kinetic energy to react.
or we say; temperature increase, leads to an increase in the amount of collisions between molecules.
Answer:
<h3>25.0 grams is the mass of the steel bar.</h3>
Explanation:
Heat gained by steel bar will be equal to heat lost by the water

Mass of steel=
Specific heat capacity of steel =
Initial temperature of the steel = 
Final temperature of the steel = 

Mass of water= 
Specific heat capacity of water=
Initial temperature of the water = 
Final temperature of water = 

On substituting all values:

<h3>25.0 grams is the mass of the steel bar.</h3>
Answer:
3.01 × 10²⁴ atoms S
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
5.00 mol S
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 3.011 × 10²⁴ atoms S
<u />
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.011 × 10²⁴ atoms S ≈ 3.01 × 10²⁴ atoms S
When you add heat to a solid the particles gain energy and start to vibrate faster and faster.
When you add heat to a liquid the particles are given more energy and move faster and faster expanding the liquid.
Answer:
1.428 moles
Explanation:
If 0.0714 moles of N2 gas occupies 1.25 L space,
how many moles of N2 have a volume of 25.0 L?
Assume temperature and pressure stayed constant.
we experience it 0.0714 moles: 1.25L space
x moles : 25L of space
to get the x moles, cross multiply
(0.0714 x 25)/1.25
1.785/1.25 = 1.428 moles