Answer:
Distance cover by school bus = 149.5 miles
Explanation:
Given:
Velocity of school bus = 65 mph
Time taken by school bus = 2.3 hours
Find:
Distance cover by school bus
Computation:
Distance cover = Velocity x Time taken
Distance cover by school bus = Velocity of school bus x Time taken by school bus
Distance cover by school bus = 65 x 2.3
Distance cover by school bus = 149.5 miles
Answer :
- Carbonyl group : It is a functional group composed of a carbon atom that double bonded to oxygen atom. It is represented as

Carboxylic group : It is the class of organic compound in which the carboxylic (-COOH) group is attached to a hydrocarbon is known as carboxylic.
The general formula of carboxylic is,
. According to the IUPAC naming, the carboxylic are named as alkanoic acids.
Aldehyde group : It is the class of organic compound in which the (-CHO) group is attached to a hydrocarbon is known as aldehyde.
The general representation of aldehyde is,
. According to the IUPAC naming, the aldehyde are named as alkanals.
Ketone group : It is the class of organic compound in which the (-CO) group is directly attached to the two alkyl group of carbon is known as ketone.
The general representation of ketone is,
. According to the IUPAC naming, the ketone are named as alkanone.
Ester group : It is the class of organic compound in which the (-COO) group is directly attached to the two alkyl group of carbon is known as ester.
The general representation of ester is,
. According to the IUPAC naming, the ester are named as alkyl alkanoate.
Answer:
![[F^-]_{max}=4x10{-3}\frac{molF^-}{L}](https://tex.z-dn.net/?f=%5BF%5E-%5D_%7Bmax%7D%3D4x10%7B-3%7D%5Cfrac%7BmolF%5E-%7D%7BL%7D)
Explanation:
Hello,
In this case, for the described situation, we infer that calcium reacts with fluoride ions to yield insoluble calcium fluoride as shown below:

Which is typically an equilibrium reaction, since calcium fluoride is able to come back to the ions. In such a way, since the maximum amount is computed via stoichiometry, we can see a 1:2 mole ratio between the ions, therefore, the required maximum amount of fluoride ions in the "hard" water (assuming no other ions) turns out:
![[F^-]_{max}=2.0x10^{-3}\frac{molCa^{2+}}{L}*\frac{2molF^-}{1molCa^{2+}} \\](https://tex.z-dn.net/?f=%5BF%5E-%5D_%7Bmax%7D%3D2.0x10%5E%7B-3%7D%5Cfrac%7BmolCa%5E%7B2%2B%7D%7D%7BL%7D%2A%5Cfrac%7B2molF%5E-%7D%7B1molCa%5E%7B2%2B%7D%7D%20%20%5C%5C)
![[F^-]_{max}=4x10{-3}\frac{molF^-}{L}](https://tex.z-dn.net/?f=%5BF%5E-%5D_%7Bmax%7D%3D4x10%7B-3%7D%5Cfrac%7BmolF%5E-%7D%7BL%7D)
Best regards.
Explanation:
you look like a mohammed. im good, hbu?
Answer is: volume will be 3.97 liters.
Boyle's Law: the pressure volume law - volume of a given amount of gas held varies inversely with the applied pressure when the temperature and mass are constant.
p₁V₁ = p₂V₂.
p₁ = 755 torr.
V₁ = 5.00 l.
p₂ = 1.25 atm · 760 torr/atm.
p₂ = 950 torr.
755 torr · 5 l = 950 torr · V₂.
V₂ = 755 torr · 5 l / 950 torr.
V₂ = 3.97 l.
When pressure goes up, volume goes down.
When volume goes up, pressure goes down.