Let current be I, charge be Q and time be t.
Here we are provided with,
I = 0.72A
t = 4s / 60s / 180s / 7s / 0.5s
We know,
I = Q/t
Case I
---------
When, t = 4s
0.72 = Q/4
Q = 0.72 * 4 = 2.88C
Case II
----------
When, t = 60s
0.72 = Q/60
Q = 0.72 * 60 = 43.2C
Case III
-----------
When, t = 180s
0.72 = Q/180
Q = 0.72 * 180 = 129.6C
Case IV
-----------
When, t = 7s
0.72 = Q/7
Q = 0.72 * 7 = 5.04C
Case V
----------
When, t = 0.5s
0.72 = Q/0.5
Q = 0.72 * 0.5 = 0.36C
Answer:
56
Explanation:
I just want the points to be completely honest with you.
Answer:
No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings.
Explanation:
Energy is required to melt a solid because the cohesive bonds between the molecules in the solid must be broken apart such that, in the liquid, the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature. Similarly, energy is needed to vaporize a liquid, because molecules in a liquid interact with each other via attractive forces. There is no temperature change until a phase change is complete. The temperature of a cup of soda initially at 0ºC stays at 0ºC until all the ice has melted. Conversely, energy is released during freezing and condensation, usually in the form of thermal energy. Work is done by cohesive forces when molecules are brought together. The corresponding energy must be given off (dissipated) to allow them to stay together Figure 2.
The energy involved in a phase change depends on two major factors: the number and strength of bonds or force pairs. The number of bonds is proportional to the number of molecules and thus to the mass of the sample. The strength of forces depends on the type of molecules. The heat Q required to change the phase of a sample of mass m is given by
Q = mLf (melting/freezing,
Q = mLv (vaporization/condensation),
where the latent heat of fusion, Lf, and latent heat of vaporization, Lv, are material constants that are determined experimentally.
Answer:
<h2>
m/s ^2</h2><h2 />
Explanation:
Solution,
When a certain object comes in motion from rest, in the case, initial velocity = 0 m/s
Initial velocity ( u ) = 0 m/s
Final velocity ( v ) = 72 km/h ( Given)
We have to convert 72 km /h in m/s


m/s
Final velocity ( v ) = 20 m/s
Time taken ( t ) = 2 seconds
Acceleration (a) = ?
Now,
we have,



m/s ^2
Hope this helps...
Good luck on your assignment..
Answer:
a) x = v₀² sin 2θ / g
b) t_total = 2 v₀ sin θ / g
c) x = 16.7 m
Explanation:
This is a projectile launching exercise, let's use trigonometry to find the components of the initial velocity
sin θ =
/ vo
cos θ = v₀ₓ / vo
v_{oy} = v_{o} sin θ
v₀ₓ = v₀ cos θ
v_{oy} = 13.5 sin 32 = 7.15 m / s
v₀ₓ = 13.5 cos 32 = 11.45 m / s
a) In the x axis there is no acceleration so the velocity is constant
v₀ₓ = x / t
x = v₀ₓ t
the time the ball is in the air is twice the time to reach the maximum height, where the vertical speed is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
t = v_{o} sin θ / g
we substitute
x = v₀ cos θ (2 v_{o} sin θ / g)
x = v₀² /g 2 cos θ sin θ
x = v₀² sin 2θ / g
at the point where the receiver receives the ball is at the same height, so this coincides with the range of the projectile launch,
b) The acceleration to which the ball is subjected is equal in the rise and fall, therefore it takes the same time for both parties, let's find the rise time
at the highest point the vertical speed is zero
v_{y} = v_{oy} - gt
v_{y} = 0
t = v_{oy} / g
t = v₀ sin θ / g
as the time to get on and off is the same the total time or flight time is
t_total = 2 t
t_total = 2 v₀ sin θ / g
c) we calculate
x = 13.5 2 sin (2 32) / 9.8
x = 16.7 m