Answer:
Option D (On the...............dominate) would be the right approach.
Explanation:
The Gravitational constant (G) will be:
= 
The Coulomb's law constant (K) will be:
= 
- Throughout particular, these have been determined that among 2 substances with almost the similar form of charge, the combination of electromagnetic as well as the force does seem to be usually the following:
⇒ 
- By that same argument, the electrostatic force including its planet's atmosphere would have strongly influenced the effect, as well as maybe the planet's atmosphere, would have crashed, or perhaps the earth would have shifted at a much longer exposure from one another and.
- Throughout particular, astronomical distance statutory framework that gravity seems to be predominant, whereas electrostatic forces have been generally ignored. It is quite since there are so many categories of allegations throughout the planet's atmosphere that balance out someone else's effects, there's only yet another form of momentum, because although the forces are still cumulative, as well as therefore offering to help everything hold to the universe, encouraging the universe just to rotate across the sun.
The latter three choices aren't connected to either the situation mentioned in the clarification segment elsewhere here.
Answer:
(D) It is stronger when the objects are closer.
Explanation:
Newton's universal law 9f gravitation
Answer:
Option A. 180000 Kgm/s.
Explanation:
From the question given above, the following data were obtained:
For Train Car A:
Mass of train car A = 45000 Kg
Velocity of train car A = 4 m/s
Momentum of train car A =?
For Train Car B:
Mass of train car B = 45000 Kg
Velocity of train car B = 0 m/s
Momentum is simply defined as the product of mass and velocity. Mathematically, it can be expressed as:
Momentum = mass × velocity
With the above formula, the momentum of train car A before collision can be obtained as follow:
Mass of train car A = 45000 Kg
Velocity of train car A = 4 m/s
Momentum of train car A =?
Momentum = mass × velocity
Momentum = 45000 × 4
Momentum of train car A = 180000 Kgm/s
Answer:
The velocity must be reduced to one third to stay on the road
Explanation:
The sideways force that friction must resist comes from the centrifugal acceleration due to the turn.
fc=mv2Rfc=mv2R
the frictional force is given by
ff=μmgff=μmg where μμ is the static friction coefficient
if the car is not to skid
fc≤fffc≤ff so
mv2R≤μmgmv2R≤μmg
v≤μgR−−−−√v≤μgR
thus vv varies as the square root of μμ
so if μμ is reduced by 9, vv must be reduced by 9–√=39=3
and thus the speed must be reduced to<u> 26</u> m/s
3