The answer is "heat transfer."
Answer:
a = 2 [m/s^2]
Explanation:
To solve this problem we must use the expressions of kinematics, we must bear in mind that when a body is at rest its velocity is zero.

where:
Vf = final velocity = 0
Vi = initial velocity = 60 [m/s]
a = desacceleration [m/s^2]
t = time = 30 [s]
Note: the negative sign of the above equation means that the car is slowing down, i.e. its speed decreases.
0 = 60 - (a*30)
a = 2 [m/s^2]
Answer:
Magnitude of the force is

direction of the force is given as
West of South
Explanation:
As we know that force is a vector quantity and in order to find the resultant of two or more forces we need to add them vectorialy
So here we have

here we know that first force is of magnitude 2 N towards east

second force is also of 2.0 N due North

now from above equation


so magnitude of the force is given as


direction of the force is given as


West of South
Answer:
The total amount of CO₂ produced will be = 20680 kg/year
The reduction in the amount of CO₂ emissions by that household per year = 3102 kg/year
Explanation:
Given:
Power used by household = 14000 kWh
Fuel oil used = 3400 L
CO₂ produced of fuel oil = 3.2 kg/L
CO₂ produced of electricity = 0.70 kg/kWh
Now, the total amount of CO₂ produced will be = (14000 kWh × 0.70 kg/kWh) + (3400 L × 3.2 kg/L)
⇒ The total amount of CO₂ produced will be = 9800 + 10880 = 20680 kg/year
Now,
if the usage of electricity and fuel oil is reduced by 15%, the reduction in the amount of the CO₂ emission will be = 0.15 × 20680 kg/year = 3102 kg/year
Answer:
792 J
Explanation:
The total energy of the ball is E = U + K where U = potential energy = mgh and K = kinetic energy = 1/2mv²
E = mgh + 1/2mv² where m = mass of ball = 2.0 kg, g = acceleration due to gravity = 9.8 m/s², h = height of building = 20.0 m, v = initial velocity of ball = 20.0 m/s.
So, substituting the values of the variables into E, we have
E = mgh + 1/2mv²
= 2.00 kg × 9.8 m/s² × 20.0 m + 1/2 × 2.00 kg × (20.0 m/s)²
= 392 J + 400 J
= 792 J