Answer:
The correct option is D
Explanation:
From the question we are told that
The intensity of the first electromagnetic wave is
The amplitude of the electric field is 
The intensity of the second electromagnetic wave is 
Generally the an electromagnetic wave intensity is mathematically represented as

Looking at this equation we see that

=> ![\frac{I_1}{I_2} = [ \frac{ E_{max}_1}{ E_{max}_2} ] ^2](https://tex.z-dn.net/?f=%5Cfrac%7BI_1%7D%7BI_2%7D%20%20%3D%20%20%5B%20%5Cfrac%7B%20E_%7Bmax%7D_1%7D%7B%20E_%7Bmax%7D_2%7D%20%5D%20%5E2)
=> 
=>
=>
Answer:
= 1.75 × 10⁻⁴ m/s
Explanation:
Given:
Density of copper, ρ = 8.93 g/cm³
mass, M = 63.5 g/mol
Radius of wire = 0.625 mm
Current, I = 3A
Area of the wire,
=
Now,
The current density, J is given as
= 2444619.925 A/mm²
now, the electron density, 
where,
=Avogadro's Number

Now,
the drift velocity, 

where,
e = charge on electron = 1.6 × 10⁻¹⁹ C
thus,
= 1.75 × 10⁻⁴ m/s
The correct answer is
<span>
force per unit charge.
In fact, the electric field strength is defined as the electric force per unit charge experienced by a positive test charge located in the electric field. In formula:
</span>

where
E is the electric field strength
F is the electric force experienced by the charge
q is the positive test charge.
Answer: No
Can the change in cyclin concentration during mitosis be explained by the fact that the cell divides in two and thus divides the material in the cell into two smaller volumes?
Explanation: The cyclin concentration is not halved but degraded during mitosis.
There is an increase in cyclin concentrations at interphase. These changes are caused by the presence of Cyclin Dependent Kinase (CDK) complexes. CDK being a substrate of cyclin catalyses cyclin, thereby increasing its concentration. During mitosis, cyclins are destroyed, signifying the end of mitosis and cytokinesis.
Without this process, it will be impossible for the cell to exit mitosis.
<h3>
Answer:</h3>
172.92 °C
<h3>
Explanation:</h3>
Concept being tested: Quantity of heat
We are given;
- Specific heat capacity of copper as 0.09 cal/g°C
- Quantity of heat is 8373 calories
- Mass of copper sample as 538.0 g
We are required to calculate the change in temperature.
- In this case we need to know that the amount of heat absorbed or gained by a substance is given by the product of mass, specific heat capacity and change in temperature.
Therefore, to calculate the change in temperature, ΔT we rearrange the formula;
ΔT = Q ÷ mc
Thus;
ΔT = 8373 cal ÷ (538 g × 0.09 cal/g°C)
= 172.92 °C
Therefore, the change in temperature will be 172.92 °C