Use the rule is/of, %/100
In this situation, you have:
The mode is 79 (that’s the most common number).
The median is 78.5 (the middle value or the average of the two middle values, since there is an even number of test scores).
The mean is less than both of those, as it was brought down by the few scores of 49.
The means the mean will be less than median.
Answer: C
Answer:
G. ABD = 74
H. DBC = 206
I. XYW = 33.75
J. WYZ = 46.25
Step-by-step explanation:
For G and H: You have a straight line (ABC) with another line coming off of it, creating two angles (ABD and DBC). A straight line has an angle of 180 degrees. This means that the two angles from the straight line when combined will give you 180 degrees. Solve for x.
ABD + DBC = ABC
(1/2x + 20) + (2x - 10) = 180
1/2x + 20 + 2x - 10 = 180
5/2x + 10 = 180
5/2x = 170
x = 108
Now that you have x, you can solve for each angle.
ABD = 1/2x + 20
ABD = 1/2(108) + 20
ABD = 54 + 20
ABD = 74
DBC = 2x - 10
DBC = 2(108) - 10
DBC = 216 - 10
DBC = 206
For I and J: For these problems, you use the same concept as before. You have a right angle (XYZ) that has within it two other angles (XYW and WYZ). A right angle has 90 degrees. Combine the two unknown angles and set it equal to the right angle. Solve for x.
XYW + WYZ = XYZ
(1 1/4x - 10) + (3/4x + 20) = 90
1 1/4x - 10 + 3/4x + 20 = 90
2x + 20 = 90
2x = 70
x = 35
Plug x into the angle values and solve.
XYW = 1 1/4x - 10
XYW = 1 1/4(35) - 10
XYW = 43.75 - 10
XYW = 33.75
WYZ = 3/4x + 20
WYZ = 3/4(35) + 20
WYZ = 26.25 + 20
WYZ = 46.25
270° clockwise rotation & 90° counterclockwise rotation