Answer:
Pyrophoricity is a property of metals and oxides of lower oxidation states, including radioactive ones, in which they spontaneously ignite during or after stabilization.
Explanation:
The given balanced reaction is as follows.

It is given that mass of ammonium nitrate is 86.0 kg.
As 1 kg = 1000 g. So, 86.0 kg = 86000 g.
Hence, moles of
present will be as follows.
Moles of
= 
= 
= 1074.42 mol
Therefore, moles of
,
and
produced by 1074.42 mole of
will be as follows.
Moles of
= 
= 537.21 mol
Moles of
= 
= 1074.42 mol
Moles of
= 
= 2148.84 mol
Therefore, total number of moles will be as follows.
537.21 mol + 1074.42 mol + 2148.84 mol
= 3760.47 mol
According to ideal gas equation, PV = nRT. Hence, calculate the volume as follows.
PV = nRT
1 atm \times V = 3760.47 mol \times 0.0821 L atm/mol K \times 580 K[/tex] (as
= 307 + 273 = 580 K)
V = 179066.06 L
Thus, we can conclude that total volume of the gas is 179066.06 L.
As your question is vague, I am assuming that you are talking Alpha, Beta and Gamma radiation. Out of these three radiation, Gamma radiation is the smallest in size compared to Alpha or Beta, but it has the highest energy levels. Gamma radiation is also known as photons. In other words, photons are light particles.