Since the measurement is not changing, the answer is 100 mL. Hope this helps.
D! the molecules of the warmer water would have a higher average kinetic energy :)
Answer:
The concentration of this sodiumhydroxide solutions is 0.50 M
Explanation:
Step 1: Data given
Mass of sodium hydroxide (NaOh) = 8.0 grams
Molar mass of sodium hydroxide = 40.0 g/mol
Volume water = 400 mL = 0.400 L
Step 2: Calculate moles NaOH
Moles NaOH = mass NaOH / molar mass NaOH
Moles NaOH = 8.0 grams / 40.0 g/mol
Moles NaOh = 0.20 moles
Step 3: Calculate concentration of the solution
Concentration solution = moles NaOH / volume water
Concentration solution = 0.20 moles / 0.400 L
Concentration solution = 0.50 M
The concentration of this sodiumhydroxide solutions is 0.50 M
Answer:
The pH does not decrease drastically because the NaOH reacts with the <u>D) Benzoic acid</u> present in the buffer solution.
Explanation:
The hydroxide ions will react with acidic part of the solutions, it means the benzoic acid, so it will form the conjugate base, the benzoate ion.
Answer:25,06 kJ of energy must be added to a 75 g block of ice.
ΔHfusion(H₂O) = 6,01 kJ/mol.
T(H₂O) = 0°C.
m(H₂O) = 75 g.
n(H₂O) = m(H₂O) ÷ M(H₂O).
n(H₂O) = 75 g ÷ 18 g/mol.
n(H₂O) = 4,17 mol.
Q = ΔHfusion(H₂O) · n(H₂O)
Q = 6,01 kJ/mol · 4,17 mol
Q = 25,06 kJ.
Explanation: