As with the properties of a substance, the changes that substances undergo can be classified as either physical or chemical. During physical changes a substance changes its physical appearance, but not its composition. The evaporation of water is a physical change.
(I searched that up but here’s an explanation with my own words that you can use):
Change in matter can be classified as a physical change as well as a chemical change due to the properties of substance. A physical change changes substance within its appearance but not its composition. For an example: The evaporation of water is a physical change.
There you go hopefully that helped
Answer:
d) repeat
Explanation:
If the trend in a property is periodic, it means it will repeat on the periodic table.
Periodic properties on the table have a constant pattern as we move up or down a group or across a period from left to right.
- This helps to predict some of the salient properties of elements as we move through the periodic table.
- For example, on most periodic groups, metallicity increases as we move down the group and it decreases across the period.
Answer:
The percent by mass of copper in the mixture was 32%
Explanation:
The ammount of HNO₃ used is:
mol HNO₃ = volume * concentration
mol HNO₃ = 0.015 l * 15.8 mol/l
mol HNO₃ = 0.237 mol
According to the reaction, 4 mol HNO₃ will react with 1 mol Cu and produce 1 mol Cu²⁺. Since we have 0.237 mol HNO₃, the amount of Cu that could react would be (0.237 mol HNO₃ * 1 mol Cu / 4 mol HNO₃) 0.06 mol. This reaction would produce 0.060 mol Cu²⁺, however, only 0.010 mol Cu²⁺ were obtained, indicating that only 0.010 mol Cu were present in the mixture. This means that the acid was in excess, so we can assume that all copper present in the mixture has reacted.
Since 0.010 mol of Cu²⁺ were produced, the amount of Cu was 0.01 mol.
1 mol of Cu has a mass of 63.5 g, then 0.01 mol has a mass of:
0.01 mol Cu * 63.5 g / 1 mol = 0.635 g.
Since this amount was present in 2.00 g mixture, the amount of copper in 100 g of the mixture will be:
100 g(mixture) * 0.635 g Cu / 2 g(mixture) = 32 g
Then, the percent by mass of Cu (which is the mass of Cu in 100 g mixture) is 32%