1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pav-90 [236]
3 years ago
6

Please help, will mark brainliest

Chemistry
1 answer:
Nookie1986 [14]3 years ago
8 0

Answer:

Hhsawkjfjdwkqkaopwpwowiwowwowlwppqpqwjehdjw

You might be interested in
PLEASE HELP!! PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP’
ahrayia [7]

Answer:

B is the answer because it doesn't matches the num of valence electrons

8 0
3 years ago
Read 2 more answers
Calculate the energy (in kj/mol) required to remove the electron in the ground state for each of the following one-electron spec
Bess [88]

Explanation:

E_n=-13.6\times \frac{Z^2}{n^2}ev

where,

E_n = energy of n^{th} orbit

n = number of orbit

Z = atomic number

a) Energy change due to transition from n = 1 to n = ∞ ,hydrogen atom .

Z = 1

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{1^2}{1^2}eV=-13.6 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{1^2}{(\infty)^2}eV=0

Let energy change be E for 1 atom.

E=E_{\infty}-E_1=0-(-13.6  eV)=13.6 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 13.6 eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 13.6 \times 1.60218\times 10^{-22} kJ/mol

E'=1,312.17 kJ/mol

The energy  required to remove the electron in the ground state is 1,312.17 kJ/mol.

b) Energy change due to transition from n = 1 to n = ∞ ,B^{4+} atom .

Z = 5

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{5^2}{1^2}eV=-340 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{5^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-340eV)=340 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 340eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 340\times 1.60218\times 10^{-22} kJ/mol

E'=32,804.31 kJ/mol

The energy  required to remove the electron in the ground state is 32,804.31 kJ/mol.

c) Energy change due to transition from n = 1 to n = ∞ ,Li^{2+}atom .

Z = 3

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{3^2}{1^2}eV=-122.4 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{3^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-122.4 eV)=122.4 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 122.4 eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 122.4\times 1.60218\times 10^{-22} kJ/mol

E'=11,809.55 kJ/mol

The energy  required to remove the electron in the ground state is 11,809.55 kJ/mol.

d) Energy change due to transition from n = 1 to n = ∞ ,Mn^{24+}atom .

Z = 25

Energy of n = 1 in an hydrogen like atom:

E_1=-13.6\times \frac{25^2}{1^2}eV=-8,500 eV

Energy of n = ∞ in an hydrogen like atom:

E_{\infty}=-13.6\times \frac{25^2}{(\infty)^2}eV=0

Let energy change be E.

E=E_{\infty}-E_1=0-(-8,500 eV)=8,500 eV

1 mole = 6.022\times 10^{-23}

Energy for 1 mole = E'

E'=6.022\times 10^{-23} mol^{-1}\times 8,500eV

1 eV=1.60218\times 10^{-22} kJ

E'=6.022\times 10^{23}\times 8,500 \times 1.60218\times 10^{-22} kJ/mol

E'=820,107.88 kJ/mol

The energy  required to remove the electron in the ground state is 820,107.88 kJ/mol.

4 0
3 years ago
Consider the reaction below.
skelet666 [1.2K]

D increase in temperature and increase in pressure.

8 0
3 years ago
Read 2 more answers
Choose the words to finish the sentence. After learning about the law of conservation of mass, Sammy became interested in balanc
cestrela7 [59]

The chemical equation is unbalanced and synthesized.

<h3></h3><h3>What is a chemical equation?</h3>

A chemical equation is described as the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.

In a chemical equation, the reactant entities are given on the left-hand side and the product entities is shown on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that indicates towards the products to show the direction of the reaction.

We can conclude that in the chemical equation shown is unbalanced because both amounts of the individual elements and compounds do not reflect on the reactant and product side.

Learn more about chemical equations at: brainly.com/question/11231920

#SPJ1

The complete question is below:

After learning about the law of conservation of mass, Sammy became interested in balancing equations. He knew that the symbol for aluminum was Al and silver tarnish was Ag2S. He also knew that mixing the two chemicals yielded pure silver, or Ag, in an aluminum sulfide solution. Here is the equation showing this reaction:

3 Ag2S + 2 Al → 6 Ag + Al2S3

This equation is (synthesis / unbalanced / replacement / balanced), and it represents a(n) (unbalanced / balanced / synthesized / replaced) chemical reaction.

answer choices:

  • synthesis; balanced

  • balanced; replacement

  • unbalanced; synthesized

  • balanced; balanced

6 0
1 year ago
40 g of CaCO3 is how many moles of CaCO3?<br> 10 moles<br> 0.4 moles<br> 40 moles<br> 100 moles
AleksandrR [38]

Answer:

0.4 moles

Explanation:

To convert between moles and grams you need the molar mass of the compound. The molar mass of of CaCO3 is 100.09g/mol. You use that as the unit converter.

40gCaCO3* 1mol CaCO3/100.09gCaCO3 = 0.399640 mol CaCO3

This rounds to 0.4 moles CaCO3

8 0
3 years ago
Other questions:
  • If you are given 1.709 moles of solute, and you dilute it to make 2.10 liters of solution, what is the resulting molarity (M)? (
    14·1 answer
  • Should a mortar and pestle should be used for grinding only one substance at a time
    11·1 answer
  • What evidence of a chemical reaction might you see in bleaching a stain
    8·2 answers
  • Identify the base in this acid-base reaction:<br> NaOH + HCI --- NaCl + H,0
    8·2 answers
  • Choose all the answers that apply.
    14·2 answers
  • How many moles of Hydrogen gas must be used to make 0.75 mol of NH3?<br> N2+3H2 ---&gt;2NH3 *
    6·1 answer
  • Which compound that directly provides energy in living cells is being produced in every tube where cellular respiration is occur
    5·1 answer
  • 2 main reasons why we have<br> seasons.
    7·1 answer
  • In an exothermic reaction, the energy stored in the chemical bonds of the reactants is: (A) less than the energy stored in the b
    5·1 answer
  • Butane is a common fuel used in cigarette lighters and camping stoves. Normally supplied in metal containers under pressure, the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!