Answers:
a) -2.54 m/s
b) -2351.25 J
Explanation:
This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum
must be equal to the final momentum
:
(1)
Where:
(2)
(3)
is the mass of the first football player
is the velocity of the first football player (to the south)
is the mass of the second football player
is the velocity of the second football player (to the north)
is the final velocity of both football players
With this in mind, let's begin with the answers:
a) Velocity of the players just after the tackle
Substituting (2) and (3) in (1):
(4)
Isolating
:
(5)
(6)
(7) The negative sign indicates the direction of the final velocity, to the south
b) Decrease in kinetic energy of the 110kg player
The change in Kinetic energy
is defined as:
(8)
Simplifying:
(9)
(10)
Finally:
(10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision
Answer:
2 seconds
Explanation:
if a ball travels 1/2 meter per second, and there's 2 halfs in a whole, 1/2 meter per second x 2 halfs in a whole meter is 2 seconds to travel a meter
Answer: Yes the further the sun is away the longer the shadow is. At noon,the shadow is the shortest because its straight up above you. If this helps pls mark brainliest!
Force is mass times acceleration. This means an object with a larger mass needs a stronger force to be moved along at the same acceleration as an object with a small mass
Answer:
Three long wires are connected to a meter stick and hang down freely. Wire 1 hangs from the 50-cm mark at the center of the meter stick and carries 1.50 A of current upward. Wire 2 hangs from the 70-cm mark and carries 4.00 A of current downward. Wire 3 is to be attached to the meterstick and to carry a specific current, and we want to attach it at a location that results ineach wire experiencing no net force.
(a) Determine the position of wire 3.
b) Determine the magnitude and direction of current in wire 3
Explanation:
a) 

position of wire = 50 - 1.2
= 48.8cm
b) 

Direction ⇒ downward