Power delivered = (energy delivered) / (time to deliver the energy)
Power delivered = (4,000 J) / (0.5 sec)
Power delivered = 8,000 watts
I'm a little surprised to learn that Electro draws his power from the mains. This is VERY good news for Spiderman ! It means that Spiderman can always avoid tangling with Electro ... all he has to do is stay farther away from Electro than the length of Electro's extension cord.
But OK. Let's assume that Electro draws it all from the mains. Then inevitably, there must be some loss in Electro's conversion process, between the outlet and his fingertips (or wherever he shoots his bolts from).
The efficiency of Electro's internal process is
<em>(power he shoots out) / (power he draws from the mains) </em>.
So, if he delivers energy toward his target at the rate of 8,000 watts, he must draw power from the mains at the rate of
<em>(8,000 watts) / (his internal efficiency) . </em>
To answer the following questions for this specific problem:
a. 11.48 secs
b. Vp = a*t*3.6 =
3*11.48*3.6 = 124.0 km/h
<span>c. 9.1 secs. </span>
I am hoping that this answer has satisfied your query about
and it will be able to help you.
Correct choices are marked in bold:
travel in straight lines and can bounce off surfaces --> TRUE, normally electromagnetic waves travel in straight lines, however they can be reflected by objects, bouncing off their surfaces
travel through space at the speed of light --> TRUE, all electromagnetic waves in space (vacuum) travel at the speed of light,
)
travel only through matter --> FALSE; electromagnetic waves can also travel through vacuum
travel only through space --> FALSE, electromagnetic waves can also travel through matter
can bend around objects --> TRUE, this is what happens for instance when diffraction occurs: electromagnetic waves are bended around obstacles or small slits
move by particles bumping into each other --> FALSE, electromagnetic waves are oscillations of electric and magnetic fields, so no particles are involved
move by the interaction between an electric field and a magnetic field --> TRUE, electromagnetic waves consist of an electric field and a magnetic field oscillating in a direction perpendicular to the direction of motion of the wave
Answer:
Weathering, erosion, and deposition from the terrestrial surface topography and soil characteristics. These processes, for example, have formed a variety of landforms in Texas like beaches, plateaus, mountains, and canyons as well as soil types like fertile soil, clay-rich soil, and sandy soil. The combination of topography, soil, and climatic conditions in an area defines the types of habitats that the area can support this is crucial to ecoregion classification. Ten separate ecoregions occur in Texas including 1) East Texas Pineywoods, 2) Gulf Coast Prairies and Marshes, 3) Oak Woods and Prairies, 4) Blackland Prairie, 5) cross timbers and prairies (6) Rolling Plains, (7) High Plains, (8) TransPecos, (9) South Texas Plains, (Brush Country), and (10) Edwards Plateau. Such ecoregions are named for the major types of habitats topographical features (e.g. Edwards Plateau) present in their areas. The weathering, erosion, and deposition of each of these ecoregions have an important influence.