Heat<span> may be </span>transferred<span> by means of conduction, convection, or radiation. </span>
Answer:
The gauge pressure is 
Explanation:
From the question we are told that
The height of the water contained is 
The height of liquid in the cylinder is 
At the bottom of the cylinder the gauge pressure is mathematically represented as

Where
is the pressure of water which is mathematically represented as

Now
is the density of water with a constant values of 
substituting values


While
is the pressure of oil which is mathematically represented as

Where
is the density of oil with a constant value

substituting values


Therefore


<h2>
Time taken is 0.632 seconds</h2>
Explanation:
Impulse momentum theorem is change in momentum is impulse.
Change in momentum = Impulse
Final momentum - Initial momentum = Impulse
Mass x Final velocity - Mass x Initial Velocity = Force x Time
Mass x Final velocity - Mass x Initial Velocity =Mass x Acceleration x Time
Final velocity - Initial Velocity = Acceleration x Time
Final velocity = 9.9 m/s
Initial Velocity = 3.7 m/s
Acceleration = 9.81 m/s²
Substituting
9.9 - 3.7 = 9.81 x Time
Time = 0.632 seconds
Time taken is 0.632 seconds
Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.
The magnitude of Alioth ( the brightest star in the big dipper ) is 1.76 and it is about 81 light years distant from Earth.