Answer:
speed of current is 5 mile/hr
Explanation:
GIVEN DATA:
speed of motorboat = 15 miles/hr relative with water
let c is speed of current
15-c is speed of boat at upstream
15+c is speed of boat at downstream
we know that
travel time=distance/speed

150+10c+150-10c=1.5(15-c)(15+c)
300=1.5(225-c^2)
300=337.5-1.5c^2
200=225-c^2
c^2=25
c = 5
so speed of current is 5 mile/hr
Answer:
His third law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equal and opposite force on object A. ... In reaction, a thrusting force is produced in the opposite direction.
Explanation:
P = V^2 / R.
So, 3.3^2 / 0.025 = 435.6W.
Note, you can get the power equation from:
P = V*I. Also, I = V/R.
Substituting V/R in for I in the 1st equation, you get P = V^2 / R.
Answer:
When the ejected air is moving in the downward direction then the thrust force acts in the upward direction, due to reversal thrust, the jets can take off vertically without needing a runway this way.
Explanation:
Newton’s third law motion states that for every action there will be an equal and opposite reaction.
Thrust reversal is also known as reverse thrust. It acts opposite to the motion of the aircraft by providing the deceleration.
Commercial aircraft moves the ejected air in the forward direction means that the thrust will acts opposite to the motion of the aircraft that is backward direction due to thrust reversal. This thrust force might be used to decelerate the craft.
Uses of thrust reversal in practice:
When the ejected air is moving forward direction then the thrust force moving backward direction due to reversal thrust the speed of the craft slows down.
When the ejected air is moving in the downward direction then the thrust force acts in the upward direction, due to reversal thrust, the jets can take off vertically without needing a runway this way.
In physics, work is defined as the total energy when an object is moved to a certain displacement by the application of external force. It is calculated by the expression W = Fd. For this case, the displacement is apparently zero, then there is no work in the system above.