Answer:
I believe the answer is D
Explanation: The doppler affect isan increase or decrease in the frequency of sound, light, or other waves as the source and observer move toward or away from each other.
Consider the motion of the car before brakes are applied:
v₀ = maximum initial velocity of the car before the brakes are applied
t = reaction time = 0.50 s
x₀ = distance traveled by the car before brakes are applied
since car moves at constant speed before brakes are applied
Using the equation
x₀ = v₀ t
x₀ = v₀ (0.50)
Consider the motion after brakes are applied :
v₀ = initial velocity of the car before the brakes are applied
a = acceleration = - 10 m/s²
v = final velocity of the car after it comes to stop = 0 m/s
x = stopping distance = initial distance - distance traveled before applying the brakes = 38 - x₀ = 38 - v₀ (0.50)
Using the equation
v² = v²₀ + 2 a x
inserting the values
0² = v²₀ + 2 (- 10) (38 - v₀ (0.50))
v²₀ = 20 (38 - v₀ (0.50))
v₀ = 23 m/s
'Newton-second' is dimensionally equivalent to 'kilogram-meter/second'.
Answer:
Explanation:
1 g is 9.8 m/s^2 the problem wants the results in km/h so we'll fix that really quick.
9.8 m/s^2 (1 km/1000m)(60 sec/1 min)^2(60 min/1 hour)^2 = 127008 km/hour^2
Now, I'm assuming the ship is starting from rest, and hopefully you know your physics equations. We are going to use vf = vi + at. Everything is just given, or we can assume, so I'll just solve.
vf = vi + at
vf = 0 + 127008 km/hour^2 * 24 hours
vf = 3,048,192 km/hour
If there's anything that doesn't make sense let me know.