To place the poles of a 1. 5 v battery to achieve the same electric field is 1.5×10−2 m
The potential difference is related to the electric field by:
∆V=Ed
where,
∆V is the potential difference
E is the electric field
d is the distance
what is potential difference?
The difference in potential between two points that represents the work involved or the energy released in the transfer of a unit quantity of electricity from one point to the other.
We want to know the distance the detectors have to be placed in order to achieve an electric field of
E=1v/cm=100v/cm
when connected to a battery with potential difference
∆v=1.5v
Solving the equation,we find



learn more about potential difference from here: brainly.com/question/28166044
#SPJ4
A joule is one Newton of force applied over a meter.
For every meter, the brakes put 240000N of force (N=Newtons).
For 40m, multiply the Newtons by 40.
240000N*40=9600000N
The 5 major unit processes include chemical coagulation, flocculation, sedimentation, filtration, and disinfection (described below). There are chemicals added to the water as it enters the various treatment processes.
The definition of speed is (distance covered) / (time to cover the distance) .
So a unit of speed has to be (a unit of length) / (a unit of time) .
Here are several perfectly fine units of speed:
-- miles per hour
-- feet per second
-- meters per second
-- kilometers per hour
-- inches per second
-- centimeters per minute
-- yards per Century
-- furlongs per fortnight
-- nanometers per microsecond
-- Smoots per week
-- parsecs per millenium