The highest point of the wheel is the position of the wheel when its potential energy is greatest.
<h3>At what position of the wheel potential energy is greatest?</h3>
The position of the wheel when its potential energy is greatest when it is at the highest point because potential energy depends on the height of an object. If the object is at more height then it has more potential energy and vice versa.
So we can conclude that the highest point of the wheel is the position of the wheel when its potential energy is greatest.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Answer is B. Longitudinal Wave
Answer:
There are three basic categories of musical instruments: percussion, wind, and stringed instruments. Most musical instruments use resonance to amplify sound waves and make sounds louder. In a musical instrument, the whole instrument and the air inside it may vibrate when the head of the drum is struck.
Distance is 50 km
Displacement is 10 km
<u>Explanation:</u>
Given:
Distance toward south, x = 25 km
Distance towards west, y = 10 km
Distance towards north, z = 15 km
(a) Total distance, D = ?
Total distance, D = x + y + z
D = 25 + 10 + 15
D = 50km
(b) Displacement, d = ?
Displacement = final position - initial position
= 10 - 0 km
= 10km
Answer:
Explanation:
Given that,
Surface area A= 17m²
The speed at the top v" = 66m/s
Speed beneath is v' =40 m/s
The density of air p =1.29kg/m³
Weight of plane?
Assuming that,
the height difference between the top and bottom of the wind is negligible and we can ignore any change in gravitational potential energy of the fluid.
Using Bernoulli equation
P'+ ½pv'²+ pgh' = P'' + ½pv''² + pgh''
Where
P' is pressure at the bottom in N/m²
P" is pressure at the top in N/m²
v' is velocity at the bottom in m/s
v" is velocity at the top in m/s
Then, Bernoulli equation becomes
P'+ ½pv'² = P'' + ½pv''²
Rearranging
P' — P'' = ½pv"² —½pv'²
P'—P" = ½p ( v"² —v'²)
P'—P" = ½ × 1.29 × (66²-40²)
P'—P" = 1777.62 N/m²
Lift force can be found from
Pressure = force/Area
Force = ∆P ×A
Force = (P' —P")×A
Since we already have (P'—P")
Then, F=W = (P' —P")×A
W = 1777.62 × 17
W = 30,219.54 N
The weight of the plane is 30.22 KN