Answer:
The value is
Explanation:
From the question we are told that
The length of the crack is
The frequency is
The distance outside the cave that is being consider is
The speed of sound is 
Generally the wavelength of the wave is mathematically represented as

=> 
=> 
Generally for a single slit the path difference between the interference patterns of the sound wave and the center is mathematically represented as

=> 
=> 
Generally the width of the sound beam is mathematically represented as

=> 
=>
Answer:
t_{out} =
t_{in}, t_{out} = 
Explanation:
This in a relative velocity exercise in one dimension,
let's start with the swimmer going downstream
its speed is

The subscripts are s for the swimmer, r for the river and g for the Earth
with the velocity constant we can use the relations of uniform motion
= D / 
D = v_{sg1} t_{out}
now let's analyze when the swimmer turns around and returns to the starting point

= D / 
D = v_{sg 2} t_{in}
with the distance is the same we can equalize

t_{out} = t_{in}
t_{out} =
t_{in}
This must be the answer since the return time is known. If you want to delete this time
t_{in}= D / 
we substitute
t_{out} = \frac{v_s - v_r}{v_s+v_r} ()
t_{out} = 
Answer:
208.33 W
141.26626 seconds
Explanation:
E = Energy = 
t = Time taken = 8 h
m = Mass = 2000 kg
g = Acceleration due to gravity = 9.81 m/s²
h = Height of platform = 1.5 m
Power is obtained when we divide energy by time

The average useful power output of the person is 208.33 W
The energy in the next part would be the potential energy
The time taken would be

The time taken to lift the load is 141.26626 seconds
Answer:
1.75atm
Explanation:
According to Boyle's law, the pressure P of a fixed mass of gas is inversely proportional to it's volume V provided that the temperature remains constant.

This implies the following;
Provided temperature is kept constant.
Given;

From equation (1), we can write;

Since all the units are consistent, there is no need for conversion.
The cat has a speed. The truck and the bicycle both have velocity. We can't be sure of what the plane has.