Answer:
The appropriate response will be "Length must be increased by 0.012%".
Explanation:
The given values is:
ΔT = 5 s/day
Now,
⇒ 
On multiplying both sides by "100", we get
⇒ 
⇒
(%)
∵ 
On substituting the values, we get
⇒
% =
%
On applying cross multiplication, we get
⇒
% =
%
⇒ = 
⇒ = 
⇒ =
%
Answer:
Applications of zeroth law of thermodynamics:
1. When we get very hot food, we wait to make it normal. In this case, hot food exchanges heat with surrounding and brings equilibrium.
2. We keep things in the fridge and those things come equilibrium with fridge temperature.
3. Temperature measurement with a thermometer or another device.
4. In the HVAC system, sensors or thermostats are used to indicate temperature. It always comes in a thermal equilibrium with room temperature.
5. If you and the swimming pool you’re in are at the same temperature, no heat is flowing from you to it or from it to you (although the possibility is there). You’re in thermal equilibrium.
Answer:
F= 600 N
Explanation:
Given that
Initial velocity ,u= 0 m/s
Final velocity ,v= 30 m/s
mass ,m = 0.5 kg
time ,t= 0.025 s
The change in the linear momentum is given as
ΔP= m (v - u)
ΔP= 0.5 ( 30 - 0 ) kg.m/s
ΔP= 15 kg.m/s
We know that from second law of Newtons


Now by putting the values

F= 600 N
John weighs 200 pounds.
In order to lift himself up to a higher place, he has to exert force of 200 lbs.
The stairs to the balcony are 20-ft high.
In order to lift himself to the balcony, John has to do
(20 ft) x (200 pounds) = 4,000 foot-pounds of work.
If he does it in 6.2 seconds, his RATE of doing work is
(4,000 foot-pounds) / (6.2 seconds) = 645.2 foot-pounds per second.
The rate of doing work is called "power".
(If we were working in the metric system (with SI units),
the force would be in "newtons", the distance would be in "meters",
1 newton-meter of work would be 1 "joule" of work, and
1 joule of work per second would be 1 "watt".
Too bad we're not working with metric units.)
So back to our problem.
John has to do 4,000 foot-pounds of work to lift himself up to the balcony,
and he's able to do it at the rate of 645.2 foot-pounds per second.
Well, 550 foot-pounds per second is called 1 "horsepower".
So as John runs up the steps to the balcony, he's doing the work
at the rate of
(645.2 foot-pounds/second) / (550 ft-lbs/sec per HP)
= 1.173 Horsepower. GO JOHN !
(I'll betcha he needs a shower after he does THAT 3 times.)
_______________________________________________
Oh my gosh ! Look at #26 ! There are the metric units I was talking about.
Do you need #26 ?
I'll give you the answers, but I won't go through the explanation,
because I'm doing all this for only 5 points.
a). 5
b). 750 Joules
c). 800 Joules
d). 93.75%
You're welcome.
And #27 is 0.667 m/s .
Answer:
I believe its A: Sports biomechanics.