It’s supposed to be gamma, what are your other options
well in my own words, i'd saw the the doppler effect is similar to light because sound has a speed, and light does too.
so my theory is if you go fast enough everything would just become black, or maybe white? idk its hard to explain
but what my point is, is taht the doppler effect works in the same way, like if a car is moving towards you the sound is being emitted from the car and being pushed by the speed of the car making it have a much higher pitch, when the car is going away however it drops to a lower pitch due the the sound waves being DRAGGED by the car.
there hoped this helped I guess
Answer:
The coefficient of kinetic friction 
Explanation:
From the question we are told that
The length of the lane is 
The speed of the truck is 
Generally from the work-energy theorem we have that

Here N is the normal force acting on the truck which is mathematically represented as
is the change in kinetic energy which is mathematically represented as
=>
=>

=> 
=> 
From the information given above,
Mass [M] = 28 g
Change in temperature = 29 - 7 = 22
Specific heat of iron = 0.449 [This value is constant]
The formula for calculating heat absorbed, Q is
Q = Mass * Specific heat of Iron * change in temperature
Q = 28 * 0.449 * 22 = 276.58 J<span />
Answer:
v = √2G
/ R
Explanation:
For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)
Eo = K + U = ½ m1 v² - G m1 m2 / r1
Ef = - G m1 m2 / r2
When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf
Eo = Ef
½ m1v² - G m1
/ R = - G m1
/ R
v² = 2G
(1 / R - 1 / Rinf)
If we do Rinf = infinity 1 / Rinf = 0
v = √2G
/ R
Ef = = - G m1 m2 / R
The mechanical energy is conserved
Em = -G m1
/ R
Em = - G m1
/ R
R = int ⇒ Em = 0