Answer:
<u>Conventions used in SI to indicate units are as follows:</u>
- Only singular form of units are used. for example: use kg and not kgs.
- Do not use full stop after the abbreviations of any unit. for example: do not use kg. or cm.
- Use one space between last numeric digit and SI unit. for example: 10 cm, 9 km.
- Symbols and words should not be mixed. for example: use Kilogram per cubic and not kilogram/m3.
- While writing numerals, only the symbols of the units should be written. for example: use 10 cm and not Ten cm.
- Units named after a scientist should be written in small letters. for example: newton, henry.
- Degree sign should not be used when the kelvin unit is used. for exmaple: use 37° and not 37°k
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
Answer:
the wavelength is 9.8 meters
Explanation:
We can use the relationship:
Velocity = wavelenght*frequency.
Initially we have:
wavelenght = 4.9m
velocity = 9.8m/s
then:
9.8m/s = 4.9m*f
f = 9.8m/s/4.9m = 2*1/s
now, if the velocity is doubled and the frequency remains the same, we have:
2*9.8m/s = wavelenght*2*1/s
wavelenght = (2*9.8m/s)*(1/2)s = 9.8 m
A roller coaster car starts from the rest from a first summit, descends a vertical distance of 45 meters and then climbs a second summit, reaching the top with a speed of 15m / s. How high is the second summit? Do not consider friction
Answer:
m = 62.14 g
Explanation:
Energy used to melt the ice is the energy released by the condensation of the water forms on the glass
so here we have
energy for the condensation of water is given as
let mass of water condensed = m

now the energy of vaporization is given as

here we know that


Now we have

